MEAN SHIFT SEGMENTATION - Evaluation of Optimization Techniques

Jens N. Kaftan, André A. Bell, Til Aach

Abstract

The mean shift algorithm is a powerful clustering technique, which is based on an iterative scheme to detect modes in a probability density function. It has been utilized for image segmentation by seeking the modes in a feature space composed of spatial and color information. Although the modes of the feature space can be efficiently calculated in that scheme, different optim zation techniques have been investigated to further improve the calculation speed. Besides those techniques that improve the efficiency using specialized data structures, there are other ones, which take advantage of some heuristics, and therefore affect the accuracy of the algorithm output. In this paper we discuss and evaluate different optimization strategies for mean shift based image segmentation. These optimization techniques are quantitatively evaluated based on different real world images. We compare segmentation results of heuristic-based, performance-optimized implementations with the segmentation result of the original mean shift algorithm as a gold standard. Towards this end, we utilize different partition distance measures, by identifying corresponding regions and analyzing the thus revealed differences.

References

  1. Bell, A. A., Kaftan, J. N., Aach, T., Meyer-Ebrecht, D., and Bö cking, A. (2006). High Dynamic Range Images as a Basis for Detection of Argyrophilic Nucleolar Organizer Regions Under Varying Stain Intensities. In IEEE International Conference on Image Processing. ICIP 2006, pages 2541-2544.
  2. Cardoso, J. and Corte-Real, L. (2005). Toward a generic evaluation of image segmentation. IEEE Transactions on Image Processing, 14(11):1773-1782.
  3. Carreira-Perpinan, M. A. (2006). Acceleration strategies for gaussian mean-shift image segmentation. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2006, pages 1160-1167.
  4. Cheng, Y. (1995). Mean Shift, Mode Seeking, and Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(8):790-799.
  5. Christoudias, C. M., Georgescu, B., and Meer, P. (2002). Synergism in Low Level Vision. In IEEE International Conference on Pattern Recognition. ICPR 2002, volume 4, pages 150-155.
  6. Comaniciu, D. and Meer, P. (1997). Robust Analysis of Feature Spaces: Color Image Segmentation. In IEEE Conference on Computer Vision and Pattern Recognition. CVPR 1997, pages 750-755.
  7. Comaniciu, D. and Meer, P. (1999). Mean Shift Analysis an Applications. In International Conference on Computer Vision. ICCV 1999, volume 2, pages 1197-1203.
  8. Comaniciu, D. and Meer, P. (2002). Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603-619.
  9. Fukunaga, K. and Hostetler, L. D. (1975). The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition. IEEE Transactions on Information Theory, 21(1):32-40.
  10. Georgescu, B., Shimshoni, I., and Meer, P. (2003). Mean Shift Based Clustering in High Dimensions: A Texture Classification Example. In International Conference on Computer Vision. ICCV 2003, volume 1, pages 456-463.
  11. Grady, L. (2006). Random walks for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(11):1768-1783.
  12. Hu, Q., Hou, Z., and Nowinski, W. L. (2006). Supervised range-constrained thresholding. IEEE Transactions on Image Processing, 15(1):228-240.
  13. Kaftan, J. N., Kiraly, A. P., Naidich, D. P., and Novak, C. L. (2006). A Novel Multi-Purpose Tree and Path Matching Algorithm with Application to Airway Trees. In SPIE Medical Imaging 2006: Physiology, Function, and Structure from Medical Images, volume 6143, pages 215-224.
  14. Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval Research Logistic Quarterly, 2:83-97.
  15. Nene, S., Nayar, S., and Murase, H. (1996a). Columbia Object Image Library (COIL-100). Technical report, Computer Vision Laboratory, Columbia University.
  16. Nene, S., Nayar, S., and Murase, H. (1996b). Columbia Object Library (COIL-20). Technical report, Computer Vision Laboratory, Columbia University.
  17. Sethian, J. A. (1999). Level Set Methods and Fast Marching Methods. Cambridge University Press.
  18. Suri, J. S., Setarehdan, S. K., and Singh (Eds), S. (2002). Advanced Algorithmic Approaches to Medical Image Segmentation. Springer.
  19. Udupa, J. K., LaBlanc, V. R., Schmidt, H., Imielinska, C., Saha, P. K., Grevera, G. J., Zhuge, Y., Currie, L. M., Molholt, P., and Jin, Y. (2002). Methodology for evaluating image-segmentation algorithms. In SPIE Medical Imaging: Image Processing, volume 4684, pages 266-277.
Download


Paper Citation


in Harvard Style

Kaftan J., Bell A. and Aach T. (2008). MEAN SHIFT SEGMENTATION - Evaluation of Optimization Techniques . In Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008) ISBN 978-989-8111-21-0, pages 365-374. DOI: 10.5220/0001085003650374


in Bibtex Style

@conference{visapp08,
author={Jens N. Kaftan and André A. Bell and Til Aach},
title={MEAN SHIFT SEGMENTATION - Evaluation of Optimization Techniques},
booktitle={Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)},
year={2008},
pages={365-374},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001085003650374},
isbn={978-989-8111-21-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2008)
TI - MEAN SHIFT SEGMENTATION - Evaluation of Optimization Techniques
SN - 978-989-8111-21-0
AU - Kaftan J.
AU - Bell A.
AU - Aach T.
PY - 2008
SP - 365
EP - 374
DO - 10.5220/0001085003650374