VISUALIZING MULTIPLE SCALAR FIELDS ON A SURFACE

Mohammed Mostefa Mesmoudi, Leila De Floriani, Paola Magillo

Abstract

We present a new technique for the simultaneous visualization of an arbitrary number of scalar fields defined on a surface. The technique is called Generalized Atmosphere Upper Bound Level (GAUBL), since it is an evolution of our previous AUBL technique, that allowed for the visualization of a single scalar field. The generalized AUBL can highlight the dependencies and interactions between many scalar fields, and can handle a multi-valued scalar field as a special case. We have implemented the GAUBL into a visualization tool that handles triangle-based surface models, and we show here some experimental results.

References

  1. Blanc, J. L., Ward, M., and Wittels, N. (1990). Exploring n-dimensional databases. In Visualization'90, pages 230-238, San Fransisco, CA.
  2. Cohen, L., Varshney, A., Manocha, D., Turk, G., Weber, H., Agarwal, P., Brooks, P., and Wright, W. (1996). Simplification envelopes. In Proc. ACM SIGGRAPH, pages 119-128.
  3. Crawfis, R. and Allison, M. (1991). A scientific visualization synthetizer. In Proc. IEEE Viaualization'91, IEEE CS Press, Los Alamitos, CA.
  4. Feiner, S. and Beshers, C. (1990). World within world : Metaphors for exploring n-dimensional virtual worlds. In Proceedings UIST, pages 76-83.
  5. Frisken, S. F., Perry, R. N., Rockwood, A. P., and Jones, T. R. (2000). Adaptively sampled distance fields: A general representation of shape for computer graphics. Technical report, Mitsubishi Electric Research Laboratories, Cambridge Research Center. TR2000-15.
  6. Huber, P. J. (1985). Projection pusuit. Annals of Statistics, 13(2):435-474.
  7. Inselberg, A. (1985). The plane with parallel coordinates. Special Issue On Computational Geometry, The Visual Computer, 1:69-97.
  8. Kirby, R., Marmanis, H., and Laidlaw, D. (1999). Visualizing multivalued data fron 2d incompressible flows using concepts from painting. In Proc. IEEE Visualization'99, IEEE CS Press, Los Alamitos, CA, pages 333-340.
  9. Mesmoudi, M., Floriani, L. D., and Rosso, P. (2007). Theoretical foundations of 3d scalar fields visualization. In Proceedings of Special Sesssions International conference on computer vision theory and application, pages 69-77, Barcelona Spain. INSTICC Press.
  10. Rossignac, J. and Requicha, A. (1985). Offsetting operations in solid modeling. Computer Aided Design, 3(2):129-148.
  11. Taylor, R. (2002). Visualizing multiple fields on the same surface. Visualization Viewpoints, IEEE Computer Graphics and applications, May/June:6-11.
Download


Paper Citation


in Harvard Style

Mostefa Mesmoudi M., De Floriani L. and Magillo P. (2008). VISUALIZING MULTIPLE SCALAR FIELDS ON A SURFACE . In Proceedings of the Third International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2008) ISBN 978-989-8111-20-3, pages 138-142. DOI: 10.5220/0001097201380142


in Bibtex Style

@conference{grapp08,
author={Mohammed Mostefa Mesmoudi and Leila De Floriani and Paola Magillo},
title={VISUALIZING MULTIPLE SCALAR FIELDS ON A SURFACE},
booktitle={Proceedings of the Third International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2008)},
year={2008},
pages={138-142},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001097201380142},
isbn={978-989-8111-20-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2008)
TI - VISUALIZING MULTIPLE SCALAR FIELDS ON A SURFACE
SN - 978-989-8111-20-3
AU - Mostefa Mesmoudi M.
AU - De Floriani L.
AU - Magillo P.
PY - 2008
SP - 138
EP - 142
DO - 10.5220/0001097201380142