THE FUTURE OF PARALLEL COMPUTING: GPU VS CELL - General Purpose Planning against Fast Graphical Computation Architectures, which is the Best Solution for General Purposes Computation?

Luca Bianchi, Riccardo Gatti, Luca Lombardi

Abstract

Complex models require high performance computing (HPC) which means Parallel Computing. That is a fact. The question we try to address in this paper is "which is the best suitable solution for HPC contexts such as rendering? Will it be possible to use it in General Purpose elaborations?" We start from these questions and analyze two different approaches, IBM CELL and the well known GPGPU, showing how changing our minds and breaking some assumptions can lead to unexpected results and open a whole set of new possibilities. We talk about rendering, but quickly move slightly towards general purpose computation, because many algorithms used in Visual Simulations are not only referred to rendering issues but to a wider range of problems.

References

  1. Akenine-Moller, T., & Haines, E. (2002). RealTime Rendering. A. K. Peters.
  2. Baker, Z. K., Gokhale, M. B., & Tripp, J. (2007). Matched Filter Computation on FPGA, Cell and GPU. 15th Annual IEEE Symposium on Field-Programmable Custom Computing Machines., (pp. 207-218).
  3. Barcelona Supercomputing Center. (2007). Matrix Multiplication Example. Retrieved 11 25, 2007, from Computer Sciences: http://www.bsc.es/plantillaH.php?cat_id=420
  4. Benthin, C., Wald, I., Scherbaum, M., & Friedrich, H. (2007). Ray Tracing on the Cell Processor. IEEE Symposium on Interactive Ray Tracing (pp. 15-23). IEEE.
  5. GPU-Tech. (2007). GPU-Tech GPU Computing. Retrieved 11 26, 2007, from GPU-Tech: http://www.gpucomputing.eu/index3.php?lang=en&pa ge=_demo1.php&id=2
  6. Gschwind, M. (2005, 08 17). The Cell project at IBM Research.
  7. IBM. (2007). Cell Broadband Engine - An Introduction.
  8. Kistler, M., Perrone, M., & Petrini, F. (2006). Cell Multiprocessor Communication Network: Built for Speed. IEEE Micro , 26 (3), 10-23.
  9. Luebke, D., & Harris, M. (2004). GPGPU: General Pourpose Computation On Graphics Hardware. SIGGRAPH Course Notes.
  10. Lurng-Kuo, L., Qiang, L., Apostol, N., Kenneth, R. A., Smith, J. R., & Varbanescu, L. A. (2007). Digital Media Indexing on the Cell Processor. IEEE International Conference on Multimedia and Expo. IEEE International.
  11. Minor, B. (2007, 09 05). Cell vs G80. Retrieved 11 23, 2007, from Game Tomorrow: http:// gametomorrow.com/blog/index.php/2007/09/05/cellvs-g80/
  12. nVidia CUDA. (2007). GeForce 8800 & NVIDIA CUDA A New Architecture for Computing on the GPU.
  13. nVidia. (2006). CUDA Programming GUIDE v0.8. nVidia.
  14. nVidia. (2007, 10 18). nVidia Tesla Tech Specifications. Retrieved 11 18, 2007, from nVidia Web site: http://www.nvidia.com/object/tesla_tech_specs.html
  15. nVidia Technical Brief. (2006). NVIDIA GeForce 8800 GPU Architecture Overview. nVidia Corporaion.
  16. Park, J., & Soonhoi, H. (2007). Performance Analysis of Parallel Execution of H.264 Encoder on the Cell Processor. IEEE/ACM/IFIP Workshop on Embedded Systems for Real-Time Multimedia, 2007 (pp. 27-32). ESTIMedia.
  17. The Computer Language Co. Inc. (2004). Graphics Pipeline. Retrieved from Answer.com: http://www.answers.com/topic/graphicspipeline?cat=technology
  18. Williams, S., Shalf, J., Oliker, L., Kamil, S., Husbands, P., & Yelick, K. (2006). The Potential of the Cell. Berkeley : Computational Research Division Lawrence Berkeley National Laboratory.
  19. Wright, R. J. (2004). OpenGL SuperBible. Addison Wesley.
Download


Paper Citation


in Harvard Style

Bianchi L., Gatti R. and Lombardi L. (2008). THE FUTURE OF PARALLEL COMPUTING: GPU VS CELL - General Purpose Planning against Fast Graphical Computation Architectures, which is the Best Solution for General Purposes Computation? . In Proceedings of the Third International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2008) ISBN 978-989-8111-20-3, pages 419-425. DOI: 10.5220/0001099904190425


in Bibtex Style

@conference{grapp08,
author={Luca Bianchi and Riccardo Gatti and Luca Lombardi},
title={THE FUTURE OF PARALLEL COMPUTING: GPU VS CELL - General Purpose Planning against Fast Graphical Computation Architectures, which is the Best Solution for General Purposes Computation?},
booktitle={Proceedings of the Third International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2008)},
year={2008},
pages={419-425},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001099904190425},
isbn={978-989-8111-20-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2008)
TI - THE FUTURE OF PARALLEL COMPUTING: GPU VS CELL - General Purpose Planning against Fast Graphical Computation Architectures, which is the Best Solution for General Purposes Computation?
SN - 978-989-8111-20-3
AU - Bianchi L.
AU - Gatti R.
AU - Lombardi L.
PY - 2008
SP - 419
EP - 425
DO - 10.5220/0001099904190425