OFF-LINE ROBUSTIFICATION OF EXPLICIT MPC LAWS - The Case of Polynomial Model Representation

Pedro Rodríguez-Ayerbe, Sorin Olaru

Abstract

The paper deals with the predictive control for linear systems subject to constraints, technique which leads to nonlinear (piecewise affine) control laws. The main goal is to reduce the sensitivity of these schemes with respect to the model uncertainties and avoid in the same time a fastidious on-line optimisation which may reduce the range of application. In this idea a two stage predictive strategy is proposed, which synthesizes in a first instant an analytical (continuous and piecewise linear) control law based on the nominal model and secondly robustify the central controller (the controller obtained when no constraint is active). This robustification is then expanded to all the space of the piecewise structure by means of its corresponding noise model.

References

  1. Ansay P., M. Gevers and V. Wertz (1998). Enhancing the robustness of GPC via a simple choice of the Youla parameter. European Journal of Control, 4, 64-70.
  2. Bemporad A., C. Filippi (2006). An Algorithm for Approximate Multiparametric Convex Programming. Computational Optimization and Applications, 35, 87- 108.
  3. Bemporad A., F. Borelli and M. Morari (2002a). Model predictive control based on linear programming: The explicit solution. IEEE Transactions on Automatic Control, 47, 1974-1985.
  4. Bemporad A., M. Morari, V. Dua and E. Pistikopoulos (2002b). The explicit linear quadratic regulator for constrained systems. Automatica, 38, 3-20.
  5. Bitmead R.R., M. Gervers and V. Wertz (1990). Adaptative optimal control. The thinking Man's GPC. Prentice Hall. Englewood Cliffs, N.J.
  6. Camacho E.F., C. Bordons, “Model predictive control”, Springer-Verlag, London, 2nd ed., 2004.
  7. Clarke D. W., C. Mohtadi and P.S. Tuffs (1987). Generalized predictive control - Part I and II. Automatica, 23(2), 137-160.
  8. Clarke D.W. and R. Scattolini (1991). Constrained receding-horizon predictive control. IEE ProceedingsD, 138(4).
  9. Ehrlinger A., P. Boucher and D. Dumur (1996). Unified Approach of Equality and Inequality Constraints in G.P.C. 5th IEEE Conference on Control Applications.
  10. Goodwin, G.C., M.M. Seron, J.A. De Dona (2004). Constrained Control and Estimation, Springer-Verlag, London.
  11. Kerrigan E. and J.M. Maciejowski (2004). Feedback minmax model predictive control using a single linear program: robust stability and the explicit solution. International Journal of Robust and Nonlinear Control, 14, 395-413.
  12. Kouvaritakis B, J.A. Rossiter and A.O.T. Chang (1992). Stable generalized predictive control: an algorithm with guaranteed stability. IEE Proceedings-D, 139(4), 349-362.
  13. Maciejowski J.M. (1989). Multivariable feedback design, Addison-Wesley, England.
  14. Olaru S. and D. Dumur (2004). A parameterized polyhedra approach for explicit constrained predictive control. 43rd IEEE Conference on Decision and Control, The Bahamas.
  15. Olaru S. and D. Dumur (2005). Avoiding constraints redundancy in predictive control optimization routines. IEEE Transactions on Automatic Control, 50(9), 1459-1466.
  16. Olaru S., P. Rodriguez-Ayerbe (2006). Robustification of explicit predictive control laws. 45rd IEEE Conference on Decision and Control, San Diego.
  17. Rodríguez P. and D. Dumur (2005), Generalized Predictive Control Robustification Under Frequency and Time-Domain Constraints. IEEE Transactions on Control Systems Technology, 13(4), 577-587.
  18. Rossiter J.A. (2003). Model Based Predictive Control. A practical approach. CRC Press. Florida, USA.
  19. Seron M., G. Goodwin, and J. D. Dona (2003). Characterisation of receding horizon control for constrained linear systems. Asian Journal of Control, 5(2), 271-286.
  20. TØndel P., T. Johansen and A. Bemporad (2003). Evaluation of piecewise affine control via binary search tree. Automatica, 39 (5),945-950.
  21. Yoon T.W. and D.W. Clarke (1995). Observer design in receiding-horizon predictive control. Int. Journal of Control, 61(1), 171-191.
Download


Paper Citation


in Harvard Style

Rodríguez-Ayerbe P. and Olaru S. (2008). OFF-LINE ROBUSTIFICATION OF EXPLICIT MPC LAWS - The Case of Polynomial Model Representation . In Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO, ISBN 978-989-8111-32-6, pages 96-101. DOI: 10.5220/0001481300960101


in Bibtex Style

@conference{icinco08,
author={Pedro Rodríguez-Ayerbe and Sorin Olaru},
title={OFF-LINE ROBUSTIFICATION OF EXPLICIT MPC LAWS - The Case of Polynomial Model Representation},
booktitle={Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,},
year={2008},
pages={96-101},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001481300960101},
isbn={978-989-8111-32-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,
TI - OFF-LINE ROBUSTIFICATION OF EXPLICIT MPC LAWS - The Case of Polynomial Model Representation
SN - 978-989-8111-32-6
AU - Rodríguez-Ayerbe P.
AU - Olaru S.
PY - 2008
SP - 96
EP - 101
DO - 10.5220/0001481300960101