DYNAMICAL MODELS FOR OMNI-DIRECTIONAL ROBOTS WITH 3 AND 4 WHEELS

Hélder P. Oliveira, Armando J. Sousa, A. Paulo Moreira, Paulo J. Costa

Abstract

Omni-directional robots are becoming more and more common in recent robotic applications. They offer improved ease of maneuverability and effectiveness at the expense of increased complexity. Frequent applications include but are not limited to robotic competitions and service robotics. The goal of this work is to find a precise dynamical model in order to predict the robot behavior. Models were found for two real world omni-directional robot configurations and their parameters estimated using a prototype that can have 3 or 4 wheels. Simulations and experimental runs are presented in order to validate the presented work.

References

  1. Campion, G., Bastin, G., and Dandrea-Novel, B. (1996). Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Transactions on Robotics and Automation, 12(1):47- 62. 1042-296X.
  2. Conceic¸a˜o, A. S., Moreira, A. P., and Costa, P. J. (2006). Model identification of a four wheeled omnidirectional mobile robot. In Controlo 2006, 7th Portuguese Conference on Automatic Control, Instituto Superior Técnico, Lisboa, Portugal.
  3. Costa, P., Marques, P., Moreira, A. P., Sousa, A., and Costa, P. (2000). Tracking and identifying in real time the robots of a f-180 team. In Manuela Veloso, Enrico Pagello and Hiroaki Kitano, Robocup-99: Robot Soccer World Cup III. Springer, LNAI, pages 289-291.
  4. Diegel, O., Badve, A., Bright, G., Potgieter, and Tlale, S. (2002). Improved mecanum wheel design for omnidirectional robots. In Proc. 2002 Australasian Conference on Robotics and Automation, Auckland.
  5. Ghaharamani, Z. and Roweis, S. T. (1999). Learning nonlinear dynamical systems using an em algorithm. In M. S. Kearns, S. A. Solla, D. A. Cohn, (eds) Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 11.
  6. Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993). Novel approach to nonlinear/non-gaussian bayesian state estimation. IEE Proceedings-F on Radar and Signal Processing,, 140(2):107-113. 0956-375X.
  7. Julier, S. J. and Uhlmann, J. K. (1997). A new extension of the kalman filter to nonlinear systems. Int. Symp. Aerospace/Defense Sensing, Simul. and Controls, Orlando, FL.
  8. Khosla, P. K. (1989). Categorization of parameters in the dynamic robot model. IEEE Transactions on Robotics and Automation, 5(3):261-268. 1042-296X.
  9. Leow, Y. P., H., L. K., and K., L. W. (2002). Kinematic modelling and analysis of mobile robots with omnidirectional wheels. In Seventh lnternational Conference on Control, Automation, Robotics And Vision (lCARCV'O2), Singapore.
  10. Loh, W. K., Low, K. H., and Leow, Y. P. (2003). Mechatronics design and kinematic modelling of a singularityless omni-directional wheeled mobile robot. In Robotics and Automation, 2003. Proceedings. ICRA 7803. IEEE International Conference on, volume 3, pages 3237-3242.
  11. Muir, P. and Neuman, C. (1987). Kinematic modeling for feedback control of an omnidirectional wheeled mobile robot. In Proceedings 1987 IEEE International Conference on Robotics and Automation, volume 4, pages 1772-1778.
  12. Olsen, M. M. and Petersen, H. G. (2001). A new method for estimating parameters of a dynamic robot model. IEEE Transactions on Robotics and Automation, 17(1):95-100. 1042-296X.
  13. Pillay, P. and Krishnan, R. (1989). Modeling, simulation, and analysis of permanent-magnet motor drives, part 11: The brushless dc motor drive. IEEE transactions on Industry applications, 25(2):274-279.
  14. Salih, J., Rizon, M., Yaacob, S., Adom, A., and Mamat, M. (2006). Designing omni-directional mobile robot with mecanum wheel. American Journal of Applied Sciences, 3(5):1831-1835.
  15. Tahmasebi, A. M., Taati, B., Mobasser, F., and HashtrudiZaad, K. (2005). Dynamic parameter identification and analysis of a phantom haptic device. In Proceedings of 2005 IEEE Conference on Control Applications, pages 1251-1256.
  16. Williams, R. L., I., Carter, B. E., Gallina, P., and Rosati, G. (2002). Dynamic model with slip for wheeled omnidirectional robots. IEEE Transactions on Robotics and Automation, 18(3):285-293. 1042-296X.
  17. Xu, J., Zhang, M., and Zhang, J. (2005). Kinematic model identification of autonomous mobile robot using dynamical recurrent neural networks. In 2005 IEEE International Conference Mechatronics and Automation, volume 3, pages 1447-1450.
Download


Paper Citation


in Harvard Style

P. Oliveira H., J. Sousa A., Paulo Moreira A. and J. Costa P. (2008). DYNAMICAL MODELS FOR OMNI-DIRECTIONAL ROBOTS WITH 3 AND 4 WHEELS . In Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-8111-31-9, pages 189-196. DOI: 10.5220/0001489201890196


in Bibtex Style

@conference{icinco08,
author={Hélder P. Oliveira and Armando J. Sousa and A. Paulo Moreira and Paulo J. Costa},
title={DYNAMICAL MODELS FOR OMNI-DIRECTIONAL ROBOTS WITH 3 AND 4 WHEELS},
booktitle={Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2008},
pages={189-196},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001489201890196},
isbn={978-989-8111-31-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - DYNAMICAL MODELS FOR OMNI-DIRECTIONAL ROBOTS WITH 3 AND 4 WHEELS
SN - 978-989-8111-31-9
AU - P. Oliveira H.
AU - J. Sousa A.
AU - Paulo Moreira A.
AU - J. Costa P.
PY - 2008
SP - 189
EP - 196
DO - 10.5220/0001489201890196