ASYMPTOTIC THEORY OF THE REACHABLE SETS TO LINEAR PERIODIC IMPULSIVE CONTROL SYSTEMS

E. V. Goncharova, A. I. Ovseevich

Abstract

We study linear periodic control systems with a bounded total impulse of control. The main result is an asymptotic formula for the reachable set, which, at the same time, reveals the structure of the attractor — the set of all limit shapes of the reachable sets. The attractor is shown to be parameterized by a (finite-dimensional) toric fibre bundle over a circle. The fibre of the bundle can be described via the Floquet multipliers (monodromy matrix) of the linear system. Moreover, the limit dynamics of shapes of reachable sets can be parametrized by an explicit curve on the toric bundle.

References

  1. Arnold, V. I. (1989). Mathematical Methods of Classical Mechanics. Nauka, Moscow (in Russian).
  2. Aubin, J.-P. (2000). Impulse differential equations and hybrid systems: A viability approach. Lecture Notes, University of California at Berkeley.
  3. Branicky, M., Borkar, V. S., and Mitter, S. K. (1998). A unified framework for hybrid control: model and optimal control theory. IEEE Transactions on Automatic Control, 43(1):31-45.
  4. Dolgopyat, D., Kaloshin, V., and Koralov, L. (2004). A limit shape theorem for periodic stochastic dispersion. CPAM, 57:1127-1158.
  5. Figurina, T. Y. and Ovseevich, A. I. (1999). Asymptotic behavior of attainable sets of linear periodic control systems. J. Optim. Theory Appl., 100(2):349-364.
  6. Goncharova, E. and Ovseevich, A. (2007). Asymptotic behavior of reachable sets of linear impulsive control systems. J. of Computer & Systems Sciences Intl., (1):51-59.
  7. Miller, B. and Rubinovich, E. (2003). Impulsive Control in Continuous and Discrete-Continuous Systems. Kluwer Academic Publishers, New York.
  8. Ovseevich, A. I. (1991). Asymptotic behaviour of attainable and superattainable sets. In Proceedings of the Conference on Modeling, Estimation and Filtering of Systems with Uncertainty, Sopron, Hungary. 1990, Basel, Switzerland. Birkhaüser.
  9. Weyl, H. (1938). Mean motion. Amer. J. Math., 60:889- 896.
  10. Weyl, H. (1939). Mean motion. Amer. J. Math., 61:143- 148.
Download


Paper Citation


in Harvard Style

V. Goncharova E. and I. Ovseevich A. (2008). ASYMPTOTIC THEORY OF THE REACHABLE SETS TO LINEAR PERIODIC IMPULSIVE CONTROL SYSTEMS . In Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO, ISBN 978-989-8111-32-6, pages 131-136. DOI: 10.5220/0001490001310136


in Bibtex Style

@conference{icinco08,
author={E. V. Goncharova and A. I. Ovseevich},
title={ASYMPTOTIC THEORY OF THE REACHABLE SETS TO LINEAR PERIODIC IMPULSIVE CONTROL SYSTEMS},
booktitle={Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,},
year={2008},
pages={131-136},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001490001310136},
isbn={978-989-8111-32-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,
TI - ASYMPTOTIC THEORY OF THE REACHABLE SETS TO LINEAR PERIODIC IMPULSIVE CONTROL SYSTEMS
SN - 978-989-8111-32-6
AU - V. Goncharova E.
AU - I. Ovseevich A.
PY - 2008
SP - 131
EP - 136
DO - 10.5220/0001490001310136