A HIGHER-ORDER STATISTICS-BASED VIRTUAL INSTRUMENT FOR TERMITE ACTIVITY TARGETING

Juan José González de la Rosa, José Melgar Camarero, Stephane Bouaud, J. G. Ramiro, Antonio Moreno Muñoz

Abstract

In this paper we present the operation results of a portable computer-based measurement equipment conceived to perform non-destructive testing of suspicious termite infestations. Its signal processing module is based in the spectral kurtosis (SK), with the de-noising complement of the discrete wavelet transform (DWT). The SK pattern allows the targeting of alarms and activity signals. The DWT complements the SK, by keeping the successive approximations of the termite emissions, supposed more non-gaussian (less noisy) and with less entropy than the detail approximations. For a given mother wavelet, the maximum acceptable level, in the wavelet decomposition tree, which preserves the insects’ emissions features, depends on the comparative evolution of the approximations details’ entropies, and the value of the global spectral kurtosis associated to the approximation of the separated signals. The paper explains the detection criterion by showing different types of real-life recordings (alarms, activity, and background).

References

  1. Angrisani, L., Daponte, P., and D'Apuzzo, M. (1999). A method for the automatic detection and measurement of transients. part i: the measurement method. Measurement, 25(1):19-30.
  2. Antoni, J. (2006a). The spectral kurtosis: a useful tool for characterising non-stationary signals. Mechanical Systems and Signal Processing (Ed. Elsevier), 20(2):282-307.
  3. Antoni, J. (2006b). The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines. Mechanical Systems and Signal Processing (Ed. Elsevier), 20(2):308-331.
  4. Bendat, J. and Piersol, A. (2000). Random Data Analysis and Measurement Procedures, volume 1 of Wiley Series in Probability and Statistics. Wiley Interscience, 3 edition.
  5. Chonavel, T. (2003). Statistical Signal Processing. Modelling and Estimation, volume 1 of Advanced Textbooks in Control and Signal Processing. Springer, London, 1 edition.
  6. Iturrospe, A., Dornfeld, D., Atxa, V., and Abete, J. M. (2005). Bicepstrum based blind identification of the acoustic emission (AE) signal in precision turning. Mechanical Systems and Signal Processing (Ed. Elsevier), 19(1):447-466.
  7. Mankin, R. W. and Fisher, J. R. (2002). Current and potential uses of acoustic systems for detection of soil insects infestations. In Proceedings of the Fourth Symposium on Agroacoustic, pages 152-158.
  8. Mendel, J. M. (1991). Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications. Proceedings of the IEEE, 79(3):278-305.
  9. Miralles, R., Vergara, L., and Gosalbez, J. (2004). Material grain noise analysis by using higher-order statistics. Signal Processing (Ed. Elsevier), 84(1):197-205.
  10. Nikias, C. L. and Mendel, J. M. (1993). Signal processing with higher-order spectra. IEEE Signal Processing Magazine, pages 10-37.
  11. Robbins, W. P., Mueller, R. K., Schaal, T., and Ebeling, T. (1991). Characteristics of acoustic emission signals generated by termite activity in wood. In Proceedings of the IEEE Ultrasonic Symposium, pages 1047-1051.
  12. De la Rosa, J. J. G., Lloret, I., Moreno, A., Puntonet, C. G., and Górriz, J. M. (2006). Wavelets and wavelet packets applied to detect and characterize transient alarm signals from termites. Measurement (Ed. Elsevier), 39(6):553-564. Available online 10 January 2006.
  13. De la Rosa, J. J. G., Lloret, I., Puntonet, C. G., Piotrkowski, R., and Moreno, A. (2007a). Higher-order spectra measurement techniques of termite emissions. a characterization framework. Measurement (Ed. Elsevier), In Press:-. Available online 13 October 2006.
  14. De la Rosa, J. J. G. and Mun˜oz, A. M. (2008). Higher-order cumulants and spectral kurtosis for early detection of subterranean termites. Mechanical Systems and Signal Processing (Ed. Elsevier), 22(Issue 1):279-294. Available online 1 September 2007.
  15. De la Rosa, J. J. G., Piotrkowski, R., and Ruzzante, J. (2007b). Third-order spectral characterization of acoustic emission signals in ring-type samples from steel pipes for the oil industry. Mechanical Systems and Signal Processing (Ed. Elsevier), 21(Issue 4):1917-1926. Available online 10 October 2006.
  16. De la Rosa, J. J. G., Puntonet, C. G., and Lloret, I. (2005). An application of the independent component analysis to monitor acoustic emission signals generated by termite activity in wood. Measurement (Ed. Elsevier), 37(1):63-76. Available online 12 October 2004.
  17. Vrabie, V., Granjon, P., and Serviere, C. (2003). Spectral kurtosis: from definition to application. In IEEE, editor, IEEE-EURASIP International Workshop on Nonlinear Signal and Image Processing (NSIP'2003), volume 1, pages 1-5.
Download


Paper Citation


in Harvard Style

José González de la Rosa J., Melgar Camarero J., Bouaud S., G. Ramiro J. and Moreno Muñoz A. (2008). A HIGHER-ORDER STATISTICS-BASED VIRTUAL INSTRUMENT FOR TERMITE ACTIVITY TARGETING . In Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO, ISBN 978-989-8111-32-6, pages 155-162. DOI: 10.5220/0001493701550162


in Bibtex Style

@conference{icinco08,
author={Juan José González de la Rosa and José Melgar Camarero and Stephane Bouaud and J. G. Ramiro and Antonio Moreno Muñoz},
title={A HIGHER-ORDER STATISTICS-BASED VIRTUAL INSTRUMENT FOR TERMITE ACTIVITY TARGETING},
booktitle={Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,},
year={2008},
pages={155-162},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001493701550162},
isbn={978-989-8111-32-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,
TI - A HIGHER-ORDER STATISTICS-BASED VIRTUAL INSTRUMENT FOR TERMITE ACTIVITY TARGETING
SN - 978-989-8111-32-6
AU - José González de la Rosa J.
AU - Melgar Camarero J.
AU - Bouaud S.
AU - G. Ramiro J.
AU - Moreno Muñoz A.
PY - 2008
SP - 155
EP - 162
DO - 10.5220/0001493701550162