A NOVEL PARTICLE SWARM OPTIMIZATION APPROACH FOR MULTIOBJECTIVE FLEXIBLE JOB SHOP SCHEDULING PROBLEM

Souad Mekni, Besma Fayech Char, Mekki Ksouri

Abstract

Because of the intractable nature of the .exible job shop scheduling problem and its importance in both .elds of production management and combinatorial optimization, it is desirable to employ e cient metaheuristics in order to obtain a better solution quality for the problem. In this paper, a novel approach based on the vector evaluated particle swarm optimization and the weighted average ranking is presented to solve .exible job shop scheduling problem (FJSP) with three objectives (i) minimize the makespan, (ii) minimize the total workload of machines and (iii) minimize the workload of critical machine. To convert the continuous position values to the discrete job sequences, we used the heuristic rule the Smallest Position Value (SPV). Experimental results in this work are very encouraging since that relevent solutions were provided in a reasonable computational time.

References

  1. Abraham A., Guo. H, Liu. H., Swarm Intelligence: Foundations, Perspectives and Applications. Studies in Computational Intelligence (SCI) 26;pp. 3-25; 2006.
  2. Abraham A., Lui H. and Ghang T. G., Variable neighborhood Particle Swarm Optimization Algorithm. In GECCO'06 Seattle, Washington, USA, July 8-12, 2006.
  3. Chetouane F., Ordonnancement d'atelier tches gnralises, perturbations, ractivit. Rapport DEA de l'institut national polytechnique de Grenoble, 1995.
  4. Clerc. M., L'optimisation par essaims particulaires, versions paramtriques et adaptatives. Edition Herms, Lavoisier, 2005.
  5. Collette Y., Siarry P., Optimisation Multiobjectif. Edition Eyrolles, Paris, 2002.
  6. Coello C. A., Lechuga M. S., MOPSO:A Proposal for Multiple Objective Particle Swarm Optimization. IEEE Congress on Evolutionary Computation, Honolulu, Hawaii USA, 2002.
  7. Coello C. A., Pulido G. T., Lechuga M. S., Handling Multiple Objectives with Particle Swarm Optimization. IEEE Transactions on Evolutionary Computation, IEEE, Piscataway, NJ, 8(3) 256-279, 2004.
  8. Dupas R., Amlioration de Performance des Systmes de Production: Apport des Algorithmes volutionnistes aux Problmes d'Ordonnancement Cycliques et flexibles. Habilitation Diriger des Recherches, Universit d'Artois, 2004.
  9. Hu X., Shi Y., Eberhart R. C., Recent advances in Particle Swarm. In Proceedings of Congress on Evolutionary Computation (CEC), Portland, Oregon, 90-97, 2004.
  10. Hu X., Eberhart R. C., Multiobjective Optimization using Dynamic Neighborhood Particle Swarm Optimization. Proceeding of the 2002 Congress on Evolutionary Computation, Honolulu, Hawaii, May 12-17, 2002.
  11. Hu X., Shi Y., Eberhart R.C., Particle Swarm with extended Memory for Multiobjective Optimization. Proc. of 2003 IEEE Swarm Intelligence Symposium, pp 193- 197. Indanapolis, Indiana, USA, IEEE Service Center, April 2003.
  12. Kacem I., Hammadi S., Borne P., Approach by Localization and Multiobjective Evolutionary Optimization for flexible Job Shop Scheduling Problems. IEEE Transactions on Systems, man and cybernetics-Part c/ Applications and reviews vol 32, N.1 February , 2002.
  13. Kacem I., Hammadi S., Borne P., Pareto-optimality Approach for Flexible job-shop Scheduling Problems: hybridization of evolutionary algorithms and fuzzy logic. IEEE Transactions on Systems, man and cybernetics-Part c/ Applications and reviews vol 32, N.1 February , 2002.
  14. Kennedy J., Eberhart R. C., Particle Swarm Optimization. IEEE International Conference on Neural Networks(Perth, Australia). IEEE Service Center, Piscataway, NJ, IV, pp. 1942-1948; 1995.
  15. Liu H., Abraham A., Choi O., Moon S. H., Variable Neighborhood Particle Swarm Optimization for Multi-objective Flexible Job-shop Scheduling Problems. SEAL 2006, 197-204, 2006.
  16. Mesghouni K., Application des Algorithmes volutionnistes dans les Problmes d'Optimisation en Ordonnancement de la Production. Thse, Universit des Sciences et Technologies de Lille; 1999.
  17. Parsopoulos, K. E., Verhatis, M. N., Recent Approaches to Global Optimization Problems through Particle Swarm Optimization. Natural Computing 1: 235-306, 2002.
  18. Parsopoulos, K. E., Verhatis, M. N.(2002b), Particle Swarm Optimization Method in Multiobjective Problems. Proceedings of the 2002 ACM Symposium on Applied Computing (SAC 2002), pp. 603-607, 2002.
  19. Sakarovitch M., Optimisation Combinatoire. Mthodes Mathmatiques et Algorithmiques. Hermann, Editeurs des sciences et des arts, Paris, 1984.
  20. Shaffer D., Multiple Objective Optimization with Vector Evaluated Genetic Algorithm. In genetic Algorithm and their Applications: Proceedings of the First International Conference on Genetic Algorithm, pages 93-100, 1985.
  21. Shi Y., Particle Swarm Optimization. IEEE Neural Networks Society, February 2004. PSO Tutorial, http://www.swarmintelligence.org/tutorials.php
  22. Tasgetiren M. F., Sevkli M., Liang Y. C., Gencyilmaz G., Particle Swarm Optimization Algorithm for single Machine Total Tardiness Problem. IEEE 2004.
  23. Tasgetiren M. F., Sevkli M., Liang Y. C., Yenisey M. M., Particle Swarm Optimization and Diferential Evolution Algorithms for Job Shop Scheduling Problem. International Journal of Operational Research, vol.3, N.2, Oct 2006 pp.120-135.
  24. Xia W., Wu Z., An effective Hybrid Optimization Approach for Multi-objective flexible Job-shop Scheduling Problems. Computers and Industrial Engineering, 48:409- 425, 2005.
Download


Paper Citation


in Harvard Style

Mekni S., Fayech Char B. and Ksouri M. (2008). A NOVEL PARTICLE SWARM OPTIMIZATION APPROACH FOR MULTIOBJECTIVE FLEXIBLE JOB SHOP SCHEDULING PROBLEM . In Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8111-30-2, pages 225-230. DOI: 10.5220/0001499402250230


in Bibtex Style

@conference{icinco08,
author={Souad Mekni and Besma Fayech Char and Mekki Ksouri},
title={A NOVEL PARTICLE SWARM OPTIMIZATION APPROACH FOR MULTIOBJECTIVE FLEXIBLE JOB SHOP SCHEDULING PROBLEM},
booktitle={Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2008},
pages={225-230},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001499402250230},
isbn={978-989-8111-30-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - A NOVEL PARTICLE SWARM OPTIMIZATION APPROACH FOR MULTIOBJECTIVE FLEXIBLE JOB SHOP SCHEDULING PROBLEM
SN - 978-989-8111-30-2
AU - Mekni S.
AU - Fayech Char B.
AU - Ksouri M.
PY - 2008
SP - 225
EP - 230
DO - 10.5220/0001499402250230