SEREBIF - Search Engine Result Enhancement by Implicit Feedback

Ralph Weires, Christoph Schommer, Sascha Kaufmann

Abstract

Web search engines often include results for a query which are not really relevant for a user. SEREBIF is an approach for incorporating feeback from the users into the search engine results to increase the result quality. We especially focus on implicit feedback, which does not require the users to put any additional effort than usual into the search process. The captured information (e.g. entered queries, clicked results) is afterwards analyzed, and the results are then taken into account for further search sessions. SEREBIF can generally be used on top of an existing search engine to improve its results. In this paper, we explain the basic idea of SEREBIF, the current state of the prototype we realized and first results.

References

  1. Gong, Z., Cheang, C. W., and U, L. H. (2005). Web query expansion by wordnet. In Andersen, K. V., Debenham, J. K., and Wagner, R., editors, DEXA, volume 3588 of Lecture Notes in Computer Science, pages 166-175. Springer.
  2. Joachims, T. (2002). Optimizing search engines using clickthrough data. In KDD, pages 133-142. ACM.
  3. Kelly, D. and Belkin, N. J. (2004). Display time as implicit feedback: understanding task effects. In Sanderson, M., Järvelin, K., Allan, J., and Bruza, P., editors, SIGIR, pages 377-384. ACM.
  4. Kelly, D. and Teevan, J. (2003). Implicit feedback for inferring user preference: a bibliography. SIGIR Forum, 37(2):18-28.
  5. Miller, G. A. (1995). Wordnet: A lexical database for english. Commun. ACM, 38(11):39-41.
  6. Radlinski, F. and Joachims, T. (2005). Query chains: learning to rank from implicit feedback. In Grossman, R., Bayardo, R., and Bennett, K. P., editors, KDD, pages 239-248. ACM.
  7. Salton, G. and Buckley, C. (1990). Improving retrieval performance by relevance feedback. JASIS, 41(4):288- 297.
  8. Schommer, C. and Schroeder, B. (2005). Anima: Associate memories for categorical data streams. In Proceedings of the 3rd International Conference on Computer Science and its Applications (ICCSA).
  9. Schroeder, B., Hilker, M., and Weires, R. (2007). Dynamic association networks in information management. In Proceedings of the 4th International Conference on Machine Learning and Data Analysis (MLDA).
Download


Paper Citation


in Harvard Style

Weires R., Schommer C. and Kaufmann S. (2008). SEREBIF - Search Engine Result Enhancement by Implicit Feedback . In Proceedings of the Fourth International Conference on Web Information Systems and Technologies - Volume 2: WEBIST, ISBN 978-989-8111-27-2, pages 263-266. DOI: 10.5220/0001513202630266


in Bibtex Style

@conference{webist08,
author={Ralph Weires and Christoph Schommer and Sascha Kaufmann},
title={SEREBIF - Search Engine Result Enhancement by Implicit Feedback},
booktitle={Proceedings of the Fourth International Conference on Web Information Systems and Technologies - Volume 2: WEBIST,},
year={2008},
pages={263-266},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001513202630266},
isbn={978-989-8111-27-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Web Information Systems and Technologies - Volume 2: WEBIST,
TI - SEREBIF - Search Engine Result Enhancement by Implicit Feedback
SN - 978-989-8111-27-2
AU - Weires R.
AU - Schommer C.
AU - Kaufmann S.
PY - 2008
SP - 263
EP - 266
DO - 10.5220/0001513202630266