A STUDY OF DATA QUALITY ISSUES IN MOBILE TELECOM OPERATORS

Naiem Khodabandhloo Yeganeh, Shazia Sadiq

Abstract

Telecommunication operators currently servicing mobile users world-wide have dramatically increased in the last few years. Although most of the operators use similar technologies and equipment provided by world leaders in the field such as Ericsson, Nokia-Siemens, Motorola, etc, it can be observed that many vendors utilize propriety methods and processes for maintaining network status and collecting statistical data for detailed monitoring of network elements. This data forms their competitive differentiation and hence is extremely valuable for the organization. However, in this paper we will demonstrate through a case study based on a GSM operator in Iran, how this mission critical data can be fraught with serious data quality problems, leading to diminished capacity to take appropriate action and ultimately achieve customer satisfaction. We will further present a taxonomy of data quality problems derived from the case study. A breif survey of reported literature on data quality is presented in the context of the taxonomy, which can not only be utilized as a framework to classify and understand data quality problems in the telecommunication domain but can also be used for other domains with similar information systems landscapes.

References

  1. Al-Lawati, A., Lee, D., McDaniel, P. 2005. .lockingaware Private Record Linkage, IQIS
  2. Ballou, D. P., Pazer, H. 2003. Modeling Completeness versus Consistency Tradeoffs in Information Decision Contexts. IEEE Transactions on Knowledge and Data Engineering , vol. 15, no. 1.
  3. Ballou, D.P., Pazer, H.L. 1985. Modeling data and process quality in multi-input, multioutput information systems. Management Science, vol.31, no.2, 1985.
  4. Bhagwat, D., Chiticariu, L., Vijayvargiya, T. G. 2004. An Annotation Management System for Relational Databases. VLDB.
  5. Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A. 2007. Conditional functional dependencies for data cleaning. In ICDE.
  6. Buneman, P., Khanna, S. 2002. On Propagation of Deletions and Annotations through Views. PODS
  7. Chomicki J., Marcinkowski. J. 2005. Minimal-change integrity maintenance using tuple deletions. Inf. Comput., 197:90-121.
  8. Churces, T., Christen, P. 2004. Some Methods for Blindfolded Record Linkage. BMC Medical Informatics and Decision Making 4, no. 9.
  9. Cong, G., Fan, W., Geerts, F., Jia, X., Ma S. 2007. Improving Data Quality: Consistency and Accuracy. VLDB: 315-326.
  10. Dasu, T., Johnson, T., Muthukrishnan, S., Shkapenyuk, V. 2002. Mining database structure; or, how to build a data quality browser. SIGMOD Conference : 240-251.
  11. Elmagarmid, A. K., Panagiotis, G.I., Verykios, S.V. 2007. Duplicate Record Detection: A Survey. IEEE TKDE 19, no. 1.
  12. Fox J. C., Levitin, A., Redman, T. 1994. The Notion of Data and Its Quality Dimensions. Inf. Process. Manage. 30(1): 9-20.
  13. Freedman, M. J., Nissim, K., Pinkas, B. 2004. Efficient Private Matching and Set Intersection. EUROCRYPT.
  14. Gravano, L., Ipeirotis, P.G., Jagadish, H. V., Koudas, N., Muthukrishnan, S., Srivastava, D. 2001. Approximate string joins in a database (almost) for free. In Proceedings of the 27th International Conference on Very Large Databases (VLDB), pages 491-500.
  15. GSM Association. 2007. http://www.gsmworld.com/technology/glossary.sht8
  16. Miller, R., Haas, L., Hernandez. M. 2000. Schema mapping as query discovery. In Proc. 26th VLDB Conf., pages 77-88.
  17. Pernici, B., Scannapieco M. 2002. Data Quality in Web Information Systems. ER : 397-413.
  18. Rahm E., Do. H. 2000. Data cleaning: Problems and current approaches. IEEE Data Engineering Bulletin, 23(4):1-11.
  19. Scannapieco, M., Figotin, I., Bertino, E., Elmagarmid, A. K. 2007. Privacy preserving schema and data matching. SIGMOD Conference : 653-664.
  20. Scannapieco, M., Missier, P., Batini, C. 2005. Data Quality at a Glance. Datenbank-Spektrum 14: 6-14
  21. Silbershutz, A., Stonebreaker, M., AND Ullman, J. D. 1991. Database systems: Achievements and opportunities. In Communication with ACM 34, 10, 110-119.
  22. Srivastava, D., Velegrakis, Y. 2007. Intensional Associations Between Data and Metadata. SIGMOD.
  23. Tejada, .S, Craig, A., Knoblocka, A., Minton, S. 2001. Learning object identification rules for information integration. Information Systems Volume 26, Issue 8, Pages 607-633.
  24. Thone, H., Kiessling, W., Guntzer, U. 1995. On cautious probabilistic inference and default detachment. Ann. Oper. Res. 55, 195-224.
  25. Wang, R. Y., Storey V. C., Firth, C. P. 1995. A Framework for Analysis of Data Quality Research. IEEE Trans. Knowl. Data Eng. 7(4): 623-640
Download


Paper Citation


in Harvard Style

Khodabandhloo Yeganeh N. and Sadiq S. (2008). A STUDY OF DATA QUALITY ISSUES IN MOBILE TELECOM OPERATORS . In Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-8111-36-4, pages 441-444. DOI: 10.5220/0001689904410444


in Bibtex Style

@conference{iceis08,
author={Naiem Khodabandhloo Yeganeh and Shazia Sadiq},
title={A STUDY OF DATA QUALITY ISSUES IN MOBILE TELECOM OPERATORS},
booktitle={Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2008},
pages={441-444},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001689904410444},
isbn={978-989-8111-36-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - A STUDY OF DATA QUALITY ISSUES IN MOBILE TELECOM OPERATORS
SN - 978-989-8111-36-4
AU - Khodabandhloo Yeganeh N.
AU - Sadiq S.
PY - 2008
SP - 441
EP - 444
DO - 10.5220/0001689904410444