A MEMETIC-GRASP ALGORITHM FOR CLUSTERING

Yannis Marinakis, Magdalene Marinaki, Nikolaos Matsatsinis, Constantin Zopounidis

Abstract

This paper presents a new memetic algorithm, which is based on the concepts of Genetic Algorithms (GAs), Particle Swarm Optimization (PSO) and Greedy Randomized Adaptive Search Procedure (GRASP), for optimally clustering N objects into K clusters. The proposed algorithm is a two phase algorithm which combines a memetic algorithm for the solution of the feature selection problem and a GRASP algorithm for the solution of the clustering problem. In this paper, contrary to the genetic algorithms, the evolution of each individual of the population is realized with the use of a PSO algorithm where each individual have to improve its physical movement following the basic principles of PSO until it will obtain the requirements to be selected as a parent. Its performance is compared with other popular metaheuristic methods like classic genetic algorithms, tabu search, GRASP, ant colony optimization and particle swarm optimization. In order to assess the efficacy of the proposed algorithm, this methodology is evaluated on datasets from the UCI Machine Learning Repository. The high performance of the proposed algorithm is achieved as the algorithm gives very good results and in some instances the percentage of the corrected clustered samples is very high and is larger than 96%.

References

  1. Aha, D.W., and Bankert, R.L., 1996. A Comparative Evaluation of Sequential Feature Selection Algorithms. In Artificial Intelligence and Statistics, Fisher, D. and J.-H. Lenx (Eds.). Springer-Verlag, New York.
  2. Azzag, H., Venturini, G., Oliver, A., Gu, C., 2007. A Hierarchical Ant Based Clustering Algorithm and its Use in Three Real-World Applications, European Journal of Operational Research, 179, 906-922.
  3. Cano, J.R., Cordón, O., Herrera, F., Sánchez, L., 2002. A GRASP Algorithm for Clustering, In IBERAMIA 2002, LNAI 2527, Garijo, F.J., Riquelme, J.C. and M. Toro (Eds.). Springer-Verlag, Berlin Heidelberg, 214- 223.
  4. Cantu-Paz, E., Newsam, S., Kamath C., 2004. Feature Selection in Scientific Application, In Proceedings of the 2004 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 788-793.
  5. Chu, S., Roddick, J., 2000. A Clustering Algorithm Using the Tabu Search Approach with Simulated Annealing. In Data Mining II-Proceedings of Second International Conference on Data Mining Methods and Databases, Ebecken, N. and C. Brebbia (Eds.). Cambridge, U.K., 515-523.
  6. Dorigo, M, Stützle, T., 2004. Ant Colony Optimization. A Bradford Book, The MIT Press, Cambridge, Massachusetts, London, England.
  7. Feo, T.A., Resende, M.G.C., 1995. Greedy Randomized Adaptive Search Procedure, Journal of Global Optimization, 6, 109-133.
  8. Glover, F., 1989. Tabu Search I, ORSA Journal on Computing, 1 (3), 190-206.
  9. Glover, F., 1990. Tabu Search II, ORSA Journal on Computing, 2 (1), 4-32.
  10. Goldberg, D. E., 1989. Genetic Algorithms in Search, Optimization, and Machine Learning, AddisonWesley Publishing Company, INC. Massachussets.
  11. Holland, J.H., 1975. Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI.
  12. Jain, A., Zongker D., 1997. Feature Selection: Evaluation, Application, and Small Sample Performance, IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 153-158.
  13. Jain, A.K., Murty, M.N., Flynn, P.J., 1999. Data Clustering: A Review, ACM Computing Surveys, 31 (3), 264-323.
  14. Kao, Y., Cheng, K., 2006. An ACO-Based Clustering Algorithm, In ANTS 2006, LNCS 4150, M. Dorigo et al. (Eds.). Springer-Verlag, Berlin Heidelberg, 340- 347.
  15. Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In Proceedings of 1995 IEEE International Conference on Neural Networks, 4, 1942-1948.
  16. Kennedy, J., Eberhart, R., 1997. A discrete binary version of the particle swarm algorithm. In Proceedings of 1997 IEEE International Conference on Systems, Man, and Cybernetics, 5, 4104-4108.
  17. Kennedy, J., Eberhart, R., Shi, Y., 2001. Swarm Intelligence. Morgan Kaufmann Publisher, San Francisco.
  18. Li, Z., Tan, H.-Z., 2006. A Combinational Clustering Method Based on Artificial Immune System and Support Vector Machine, In KES 2006, Part I, LNAI 4251, Gabrys, B., Howlett, R.J. and L.C. Jain (Eds.). Springer-Verlag Berlin Heidelberg, 153-162.
  19. Liao, S.-H., Wen, C.-H., 2007. Artificial Neural Networks Classification and Clustering of Methodologies and Applications - Literature Analysis from 1995 to 2005, Expert Systems with Applications, Vol. 32, pp. 1-11.
  20. Liu, Y., Liu, Y., Wang, L., Chen, K., 2005. A Hybrid Tabu Search Based Clustering Algorithm, In KES 2005, LNAI 3682, R. Khosla et al. (Eds.). SpringerVerlag, Berlin Heidelberg, 186-192.
  21. Marinakis, Y., Migdalas, A., Pardalos, P.M., 2005. Expanding Neighborhood GRASP for the Traveling Salesman Problem, Computational Optimization and Applications, 32, 231-257.
  22. Marinakis Y., Marinaki, M., Doumpos, M., Matsatsinis, N., Zopounidis, C., 2007. Optimization of Nearest Neighbor Classifiers via Metaheuristic Algorithms for Credit Risk Assessment, Journal of Global Optimization, (accepted).
  23. Mirkin, B., 1996. Mathematical Classification and Clustering, Kluwer Academic Publishers, Dordrecht, The Netherlands.
  24. Moscato, P., Cotta C., 2003. A Gentle Introduction to Memetic Algorithms. In Handbooks of Metaheuristics, Glover, F., and G.A., Kochenberger (Eds.). Kluwer Academic Publishers, Dordrecht, 105-144.
  25. Paterlini, S., Krink, T., 2006. Differential Evolution and Particle Swarm Optimisation in Partitional Clustering, Computational Statistics and Data Analysis, 50, 1220-1247.
  26. Ray, S., Turi, R.H., 1999. Determination of Number of Clusters in K-means Clustering and Application in Colour Image Segmentation. In Proceedings of the 4th International Conference on Advances in Pattern Recognition and Digital Techniques (ICAPRDT99), Calcutta, India.
  27. Resende, M.G.C., Ribeiro, C.C., 2003. Greedy Randomized Adaptive Search Procedures. In Handbooks of Metaheuristics, Glover, F., and G.A., Kochenberger (Eds.). Kluwer Academic Publishers, Dordrecht, 219-249.
  28. Rokach, L., Maimon, O., 2005. Clustering Methods, In Data Mining and Knowledge Discovery Handbook, Maimon, O. and L. Rokach (Eds.). Springer, New York, 321-352.
  29. Shen, J., Chang, S.I., Lee, E.S., Deng, Y., Brown, S.J., 2005. Determination of Cluster Number in Clustering Microarray Data, Applied Mathematics and Computation, 169, 1172-1185.
  30. Sheng, W., Liu, X., 2006. A Genetic k-Medoids Clustering Algorithm, Journal of Heuristics, 12, 447- 466.
  31. Shi, Y., Eberhart, R. 1998. A modified particle swarm optimizer. In Proceedings of 1998 IEEE World Congress on Computational Intelligence, 69-73.
  32. Sun, J., Xu, W., Ye, B., 2006. Quantum-Behaved Particle Swarm Optimization Clustering Algorithm, In ADMA 2006, LNAI 4093, Li, X., Zaiane, O.R. and Z. Li (Eds.). Springer-Verlag, Berlin Heidelberg, 340-347.
  33. Xu, R., Wunsch II, D., 2005. Survey of Clustering Algorithms, IEEE Transactions on Neural Networks, 16 (3), 645-678.
  34. Yang, Y., Kamel, M.S., 2006. An Aggregated Clustering Approach Using Multi-Ant Colonies Algorithms, Pattern Recognition, 39, 1278-1289.
  35. Yeh, J.-Y., Fu, J.C., 2007. A Hierarchical Genetic Algorithm for Segmentation of Multi-Spectral HumanBrain MRI, Expert Systems with Applications, doi:10.1016/j.eswa.2006.12.012.
  36. Younsi, R., Wang, W., 2004. A New Artificial Immune System Algorithm for Clustering, In IDEAL 2004, LNCS 3177, Z.R. Yang et al. (Eds.). Springer-Verlag, Berlin Heidelberg, 58-64.
Download


Paper Citation


in Harvard Style

Marinakis Y., Marinaki M., Matsatsinis N. and Zopounidis C. (2008). A MEMETIC-GRASP ALGORITHM FOR CLUSTERING . In Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-8111-37-1, pages 36-43. DOI: 10.5220/0001694700360043


in Bibtex Style

@conference{iceis08,
author={Yannis Marinakis and Magdalene Marinaki and Nikolaos Matsatsinis and Constantin Zopounidis},
title={A MEMETIC-GRASP ALGORITHM FOR CLUSTERING},
booktitle={Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2008},
pages={36-43},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001694700360043},
isbn={978-989-8111-37-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - A MEMETIC-GRASP ALGORITHM FOR CLUSTERING
SN - 978-989-8111-37-1
AU - Marinakis Y.
AU - Marinaki M.
AU - Matsatsinis N.
AU - Zopounidis C.
PY - 2008
SP - 36
EP - 43
DO - 10.5220/0001694700360043