COMPLEX USER BEHAVIORAL NETWORKS AT ENTERPRISE INFORMATION SYSTEMS

Peter Géczy, Noriaki Izumi, Shotaro Akaho, Kôiti Hasida

Abstract

We analyze human behavior on a large-scale enterprise information system. Employing a novel framework that efficiently captures complex spatiotemporal dimensions of human dynamics in electronic spaces we present vital findings about knowledge workers’ behavior on enterprise intranet portal. Browsing behavior of knowledge workers resembles a complex network with significant concentration on navigational starters. Common browsing strategy utilizes the knowledge of the starting navigation point and recollection of the traversal pathway to the target. Complex traversal network topology has a small number of behavioral hubs concentrating and disseminating the browsing pathways. Human browsing network topology, however, does not match the link topology of the web environment. Knowledge workers generally underutilize the available resources, have focused interests, and exhibit diminutive exploratory behavior.

References

  1. Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17:734-749.
  2. Agichtein, E., Brill, E., and Dumais, S. (2006). Improving web search ranking by incorporating user behavior information. In Proceedings of The 29th SIGIR, pp. 19-26, Seattle, Washington, USA.
  3. Barabasi, A.-L. (2005). The origin of bursts and heavy tails in human dynamics. Nature, 435:207-211.
  4. Baraglia, R. and Silvestri, F. (2007). Dynamic personalization of web sites without user intervention. Communications of the ACM, 50:63-67.
  5. Bedue, C., Baeza-Yates, R., Ribeiro-Neto, B., Ziviani, A., and Ziviani, N. (2006). Modeling performance-driven workload characterization of web search systems. In Proceedings of CIKM, pp. 842-843, Arlington, USA.
  6. Caldarelli, G. (2007). Scale-Free Networks: Complex Webs in Nature and Technology. Oxford University Press, Cambridge, UK.
  7. Catledge, L. and Pitkow, J. (1995). Characterizing browsing strategies in the world wide web. Computer Networks and ISDN Systems, 27:1065-1073.
  8. Dezso, Z., Almaas, E., Lukacs, A., Racz, B., Szakadat, I., and Barabasi, A.-L. (2006). Dynamics of information access on the web. Physical Review, E73:066132(6).
  9. Downey, A. (2005). Lognormal and pareto distributions in the internet. Computer Communications, 28:790-801.
  10. Géczy, P., Akaho, S., Izumi, N., and Hasida, K. (2007). Usability analysis framework based on behavioral segmentation. In Psaila, G. and Wagner, R., Eds., Electronic Commerce and Web Technologies, pp. 35-45, Springer-Verlag, Heidelberg.
  11. Jin, R., Si, L., and Zhai, C. (2006). A study of mixture models for collaborative filtering. Information Retrieval, 9:357-382.
  12. Leskovec, J., Kleinberg, J., and Faloutsos, C. (2005). Graphs over time: Densification laws, shrinking diameters and possible explanations. In Proceedings of KDD, pp. 177-187, Chicago, Illinois, USA.
  13. Moe, W. (2003). Buying, searching, or browsing: Differentiating between online shoppers using in-store navigational clickstream. Journal of Consumer Psychology, 13:29-39.
  14. Newman, M. (2003). The structure and function of complex networks. SIAM Review, 45:167-256.
  15. Newman, M., Barabasi, A.-L., and Watts, D. (2005). The Structure and Dynamics of Complex Networks. Princeton University Press, Princeton, N.J.
  16. Park, Y.-H. and Fader, P. (2004). Modeling browsing behavior at multiple websites. Marketing Science, 23:280- 303.
  17. Schroeder, B. and Harchol-Balter, M. (2006). Web servers under overload: How scheduling can help. ACM Transactions on Internet Technology, 6:20-52.
  18. Thakor, M., Borsuk, W., and Kalamas, M. (2004). Hotlists and web browsing behavior-an empirical investigation. Journal of Business Research, 57:776-786.
  19. Vazquez, A. (2005). Exact results for the barabasi model of human dynamics. Physical Review Letters, 95:248701(6).
  20. Vazquez, A., Oliveira, J., Dezso, Z., Goh, K.-I., Kondor, I., and Barabasi, A.-L. (2006). Modeling bursts and heavy tails in human dynamics. Physical Review, E73:036127(19).
Download


Paper Citation


in Harvard Style

Géczy P., Izumi N., Akaho S. and Hasida K. (2008). COMPLEX USER BEHAVIORAL NETWORKS AT ENTERPRISE INFORMATION SYSTEMS . In Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 5: ICEIS, ISBN 978-989-8111-40-1, pages 233-239. DOI: 10.5220/0001700502330239


in Bibtex Style

@conference{iceis08,
author={Peter Géczy and Noriaki Izumi and Shotaro Akaho and Kôiti Hasida},
title={COMPLEX USER BEHAVIORAL NETWORKS AT ENTERPRISE INFORMATION SYSTEMS},
booktitle={Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 5: ICEIS,},
year={2008},
pages={233-239},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001700502330239},
isbn={978-989-8111-40-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 5: ICEIS,
TI - COMPLEX USER BEHAVIORAL NETWORKS AT ENTERPRISE INFORMATION SYSTEMS
SN - 978-989-8111-40-1
AU - Géczy P.
AU - Izumi N.
AU - Akaho S.
AU - Hasida K.
PY - 2008
SP - 233
EP - 239
DO - 10.5220/0001700502330239