RICAD: TOWARDS AN ARCHITECTURE FOR RECOGNIZING AUTHOR'S TARGETS

Kanso Hassan, Elhore Ali, Soulé-Dupuy Chantal, Tazi Said

Abstract

We present RICAD system based on a semi-automatic method from specific-domain corpus (with which it is impossible to apply classical method information research). This approach is based on a model of intentional structure and RICAD system to recognize the author’s intentions from written documents in a specific domain. Our RICAD system happens in three stage: 1) to make a segmentation in a semi-automatic way of a document according to the authors intentions, and to extract the intentional verbs accompanied by their concepts of each segment through the system algorithms, 2) ontology building and 3) This system is also able to update the ontology of intentions for the enrichment of the knowledge base containing all possible intentions of a domain.

References

  1. Albrecht D. W., Zukerman I. and Nicholson A. E. Bayesian Models for Keyhole Plan Recognition in an Adventure Game. User Modeling and Use Adapted Interaction, 8(1-2):5-47, 1998.
  2. Al-Hawamdeh, S."Knowledge management: re-thinking information management and facing the challenge of managing tacit knowledge" Information Research, 8(1), paper no. 143 [Available at http://InformationR.net/ir/8-1/paper143.html], 2002.
  3. Allen J. F. and Perrault R. Analyzing Intention in Utterances. Artificial Intelligence, 15(3):143-178, 1980.
  4. Al-Tawki, Y. Création par réutilisation de documents décrits par les intentions de l'auteur. Doctorat de l'Université de Toulouse 1. 2002.
  5. Bauer M. A Dempster-Shafer Approach to Modeling Agent Preferences for Plan Recognition. User Modeling and User-Adapted Interaction, 5(3-4):317- 348, 1995.
  6. Bauer M. Acquisition of User Preferences for Plan Recognition. Proceedings of the Fifth International Conference on User Modeling, 1996.
  7. Blythe J. Decision-Theoretic Planning. AI Magazine, 20(2):37-54, 1999.
  8. Fifteenth Conference on Uncertainty in Artificial Intelligence, 1999.
  9. Haddawy P. and Suwandi M. Decision-Theoretic Refinement Planning Using Inheritance Abstraction. Proceedings of the Second International Conference on Artificial Intelligence Planning, 1994.
  10. Bui H. H. A General Model for Online Probabilistic Plan Recognition. Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, 2003.
  11. Bui H. H., Venkatesh S. and G. West. Policy Recognition in the Abstract Hidden Markov Model. Journal of Artificial Intelligence Research, 17:451-499, 2002.
  12. Carberry S. Plan Recognition on Natural Language Dialogue. The MIT Press, 1990.
  13. Charniak E. and Goldman R. A Bayesian Model of Plan Recognition. Artificial Intelligence, 64(1):53-79, 1993.
  14. Charniak E. and Goldman R. A Semantics for Probabilistic Quantifier-Free First-Order Languages, with Particular Application to Story Understanding. Proceedings of the Eleventh International Joint Conference on Artificial Intelligence.1989.
  15. Doyle J. Rationality and Its Roles in Reasoning. Computational Intelligence, 8(2):376-409, 1992.
  16. Elhore, A., Tazi, S.“Pero a planning system for the explanation of problem solving in physics”. Mixed Language Explanation in Learning Environment (MLELE'05) in conjunction with AIED'05, Amsterdam, p. 80-81, 2005.
  17. Elhore, A., Tazi, S., 2005 “Explaning and Indexing Solutions for Physics Learning”. IEEE, Conférence International CELDA'05, p. 532-538.
  18. Elhore, A., Tazi, S.“Planning solution for physics learning”. International conference CAPS'05 http://europia.org/ICHSL05/) CAPS 05, Marrakech - Morocco, 2005.
  19. Elhore, A., Tazi, S.“Planning and explaining solutions for physics learning”. IEEE international conference on Machine Intelligence (http://www.acidcaicmi2005.org/) The 2nd ACIDCAICMI'2005. Tozeur - Tunisia, 2005.
  20. Elhore, A., Tazi, S.“Apprentissage par observation à travers les intentions du raisonnement”. Conference on Information Technologies, MCSEAI'06, 2006.
  21. Ferguson G. and Allen J. F. TRIPS: An Intelligent Integrated Problem-solving Assistant. Proceedings of the Fifteenth National Conference on Artificial Intelligence, 1998.
  22. Ferguson G., Allen J. F. and Milller B. TRAINS-95: Towards a Mixed-Initiative Planning Assistant. Proceedings of the Third Conference on Artificial Intelligence Planning Systems, 1996.
  23. Geib C. W. and Goldman R. P. Plan Recognition in Intrusion Detection Systems. Proceedings of the Second DARPA Information Survivability Conference and Exposition, 2001.
  24. Goldman R. P., Geib C. W. and Miller C. A.. A New Model of Plan Recognition. Proceedings of the Proceedings of the Tenth International Conference on Uncertainty in Artificial Intelligence, 1994.
  25. Kaminka G., Pynadath D. V. and Tambe M. Monitoring Teams by Overhearing: A Multiagent Plan Recognition Approach. Journal of Artificial Intelligence Research, 17:83-135, 2002.
  26. Kautz H. A. and Allen J. F. Generalized Plan Recognition. Proceedings of the Fifth National Conference on Artificial Intelligence, 1986.
  27. Mao W. and Gratch J. Decision-Theoretic Approaches to Plan Recognition. ICT Technical Report (http://www.ict. usc.edu/publications/ICT-TR-01- 2004.pdf), 2004.
  28. Marsella S. and Gratch J. Modeling Coping Behavior in Virtual Humans: Don't Worry, Be Happy. Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent Systems, 2003.
  29. Pynadath D. V. and Wellman M. P. Accounting for Context in Plan Recognition, with Application to Traffic Monitoring. Proceedings of the Eleventh International Conference on Uncertainty in Artificial Intelligence, 1995.
  30. Rickel J., Marsella S., Gratch J., Hill R., Traum D. and Swartout W. Toward a New Generation of Virtual Humans for Interactive Experiences. IEEE Intelligent Systems, 17(4):32-38, 2002.
  31. Schmidt C. F., Sridharan N. S. and Goodson J. L. The Plan Recognition Problem: An Intersection of Psychology and Artificial Intelligence. Artificial Intelligence, 11(1- 2):45-83, 1978.
  32. Tazi S."Description de documents multimédias, standards et tendances". dans Imad Saleh (Editeur), Conception et Réalisation, Hermès, 2004.
  33. Tazi S., DRIRA K., ESSAJIDI K. Enabling consistency of communicative intentions in cooperative authoring. 2nd International Conference on Innovative Views of NET Technologies (IVNET'2006), Florianopolis (Brésil), pp.237-246, 2006.
  34. Tazi S., DRIRA K., ESSAJIDI K., Maintien de la cohérence des intentions de communication dans la rédaction coopérative. 9ème Colloque International sur le Document Electronique (CIDE'2006), Fribourg (Suisse), pp.151-168., 2006.
  35. Wilensky R. Understanding Stories Involving Recurring Goals. Cognitive Science, 2:235-266, 1978.
Download


Paper Citation


in Harvard Style

Hassan K., Ali E., Chantal S. and Said T. (2008). RICAD: TOWARDS AN ARCHITECTURE FOR RECOGNIZING AUTHOR'S TARGETS . In Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 6: ICEIS, ISBN 978-989-8111-38-8, pages 374-379. DOI: 10.5220/0001713103740379


in Bibtex Style

@conference{iceis08,
author={Kanso Hassan and Elhore Ali and Soulé-Dupuy Chantal and Tazi Said},
title={RICAD: TOWARDS AN ARCHITECTURE FOR RECOGNIZING AUTHOR'S TARGETS},
booktitle={Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 6: ICEIS,},
year={2008},
pages={374-379},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001713103740379},
isbn={978-989-8111-38-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 6: ICEIS,
TI - RICAD: TOWARDS AN ARCHITECTURE FOR RECOGNIZING AUTHOR'S TARGETS
SN - 978-989-8111-38-8
AU - Hassan K.
AU - Ali E.
AU - Chantal S.
AU - Said T.
PY - 2008
SP - 374
EP - 379
DO - 10.5220/0001713103740379