NEW APPROACHES TO CLUSTERING DATA - Using the Particle Swarm Optimization Algorithm

Ahmed Ali Abdalla Esmin, Dilson Lucas Pereira

Abstract

This paper presents a new proposal for data clustering based on the Particle Swarm Optimization Algorithm (PSO). In the PSO algorithm, each individual in the population searches for a solution taking into account the best individual in a certain neighbourhood and its own past best solution as well. In the present work, the PSO algorithm was adapted by using different finenesses functions and considered the situation where the data is uniformly distributed. It is shown how PSO can be used to find the centroids of a user specified number of clusters. The proposed method was applied in an unsupervised fashion to a number of benchmark classification problems and in order to evaluate its performance.

References

  1. Asuncion, A & Newman, D.J. (2007). UCI Machine Learning Repository Irvine, CA: University of California, Department of Information and Computer Science.[http://www.ics.uci.edu/mlearn/MLRepositor y.html].
  2. Cohen, S. C. M.; Castro, L. N. de. Data Clustering with Particle Swarms. In: Congress on Evolutionary Computation, 2006. Proceedings of IEEE Congress on Evolutionary Computation 2006 (CEC 2006). Vancouver: IEEE Computer Society, 2006. p. 1792- 1798.
  3. Eberhart, R. C. and Kennedy, J. . A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39-43, 1995.
  4. Esmin, A. A. A. ; Lambert-Torres, G. ; Souza, Antonio Carlos Zambroni de . A Hybrid Particle Swarm Optimization Applied to Loss Power Minimization. IEEE Transactions on Power Systems, V. 20, n. 2, p. 859-866, 2005.
  5. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (1996), “Advances in Knowledge Discovery and Data Mining”, Chapter 1, AAAI/MIT Press 1996.
  6. Fränti, O. Virmajoki and Kaukoranta T., "Branch-andbound technique for solving optimal clustering", Int. Conf. on Pattern Recognition (ICPR'02), Québec, Canada, vol. 2, 232-235, August 2002.
  7. Kennedy, J. and Eberhart, R. C.. Particle Swarm Optimization. In Proceedings of IEEE Internal Conference on Neural Networks, Perth, Australia,Vol. 4, pp. 1942- 1948, 1995.
  8. Jiawei, H., Micheline, K. (2001), “Data Mining, Conecpts and Techniques”, Morgan Kaufmann Publishers.
  9. Merwe, D. W. van der; Engelbrecht, A. P. Data Clustering using Particle Swarm Optimization . In: Congress on Evolutionary Computation, 2003. Proceedings of IEEE Congress on Evolutionary Computation 2003 (CEC 2003), Caribella: IEEE Computer Society, 2003. p. 215-220.
Download


Paper Citation


in Harvard Style

Ali Abdalla Esmin A. and Lucas Pereira D. (2008). NEW APPROACHES TO CLUSTERING DATA - Using the Particle Swarm Optimization Algorithm . In Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-8111-37-1, pages 593-597. DOI: 10.5220/0001722105930597


in Bibtex Style

@conference{iceis08,
author={Ahmed Ali Abdalla Esmin and Dilson Lucas Pereira},
title={NEW APPROACHES TO CLUSTERING DATA - Using the Particle Swarm Optimization Algorithm},
booktitle={Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2008},
pages={593-597},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001722105930597},
isbn={978-989-8111-37-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Tenth International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - NEW APPROACHES TO CLUSTERING DATA - Using the Particle Swarm Optimization Algorithm
SN - 978-989-8111-37-1
AU - Ali Abdalla Esmin A.
AU - Lucas Pereira D.
PY - 2008
SP - 593
EP - 597
DO - 10.5220/0001722105930597