Topographic Connectionist Unsupervised Learning for RFID Behavior Data Mining

Guénaël Cabanes, Younès Bennani, Claire Chartagnat, Dominique Fresneau

Abstract

Radio Frequency IDentification (RFID) is an advanced tracking technology that can be used to study the spatial organization of animal societies. The aim of this work is to build a new RFID-based autonomous system to follow individuals spatio-temporal activity, which is not currently available, and to develop new tools for automatic data mining. We study here how to transform these data to obtain knowledge about the division of labor and intra-colonial cooperation and conflict in an ant colony by developing a new unsupervised learning data mining method (DS2L-SOM : Density-based Simultaneous Two-Level - Self Organizing Map) to find homogeneous clusters (i.e., sets of individual witch share a distinctive behavior). This method is very fast and efficient and it also allows a very useful visualization of results.

References

  1. Fresneau, D., Corbara, B., Lachaud, J.: Organisation Sociale et Structuration Spatiale Autour du Couvain chez Pachycondyla apicalis. Actes coll. Insectes Sociaux 5 (1989) 83-92
  2. Cabanes, G., Bennani, Y.: A simultaneous two-level clustering algorithm for automatic model selection. In: Proceedings of the International Conference on Machine Learning and Applications (ICMLA'07), Cincinnati, Ohio, USA (2007)
  3. Cabanes, G., Bennani, Y.: A Local Density-Based Simultaneous Two-Level Algorithm for Topographic Clustering. In: Proceeding of the International Joint Conference on Neural Networks (IJCNN'08), Hong Kong, China (2008)
  4. Aupetit, M.: Learning topology with the generative gaussian graph and the em algorithm. In: NIPS. (2005)
  5. Bohez, E.L.J.: Two level cluster analysis based on fractal dimension and iteratedfunction systems (ifs) for speech signal recognition. IEEE Asia-Pacific Conference on Circuits and Systems (1998) 291-294
  6. Hussin, M.F., Kamel, M.S., Nagi, M.H.: An efficient two-level SOMART document clustering through dimensionality reduction. In: ICONIP. (2004) 158-165
  7. Ultsch, A.: Clustering with SOM: U*C. In: Proceedings of the Workshop on Self-Organizing Maps. (2005) 75-82
  8. Guérif, S., Bennani, Y.: Selection of clusters number and features subset during a two-levels clustering task. In: Proceeding of the 10th International Conference Artificial intelligence and Soft Computing 2006, Palma de Mallorca, Spain (2006) 28-33
  9. Korkmaz, E.E.: A two-level clustering method using linear linkage encoding. International Conference on Parallel Problem Solving From Nature, Lecture Notes in Computer Science 4193 (2006) 681-690
  10. Kohonen, T.: Self-Organization and Associative Memory. Springer-Verlag, Berlin (1984)
  11. Kohonen, T.: Self-Organizing Maps. Springer-Verlag, Berlin (2001)
  12. Martinetz, T.: Competitive hebbian learning rule forms perfectly topology preserving maps. In Gielen, S., Kappen, B., eds.: Proceedings of the International Conference on Artificial Neural Networks (ICANN-93), Amsterdam, Heidelberg, Springer (1993) 427-434
  13. Pamudurthy, S.R., Chandrakala, S., Sakhar, C.C.: Local density estimation based clustering. Prodeeding of International Joint Conference on Neural Networks (2007) 1338-1343
  14. Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulation. IEEE Trans. Pattern Anal. Mach. Intell. 13 (1991) 583-598
  15. Yue, S.H., Li, P., Guo, J.D., Zhou, S.G.: Using greedy algorithm: DBSCAN revisited II. Journal of Zhejiang University SCIENCE 5 (2004) 1405-1412
  16. Hamilton, W.: The genetical evolution of social behaviour. Journal of Theoretical Biology 7 (1964) 1-52
  17. Fresneau, D.: Individual foraging path fidelity: a novel strategy in a ponerine ant. Ins. Soc. 32 (1985) 109-116
  18. Goss, S., Fresneau, D., Deneubourg, J.L., Lachaud, J.P., Valenzuela-Gonzalez, J.: Individual foraging in the ant Pachycondyla apicalis. Oecologia 80 (1989) 65-69
  19. Streit, S., Bock, F., Pirk, C.W.W., Tautz, J.: Automatic life-long monitoring of individual insect behaviour now possible. Zoology 106 (2003) 169-171
  20. Sammon Jr., J.: A nonlinear mapping for data structure analysis. 18 (1969) 401-409
  21. Fresneau, D., Dupuy, P.: Behavioural study of the primitive ant Neoponera apicalis. Anim. Behav. 36 (1988) 1389-1399
Download


Paper Citation


in Harvard Style

Cabanes G., Bennani Y., Chartagnat C. and Fresneau D. (2008). Topographic Connectionist Unsupervised Learning for RFID Behavior Data Mining . In Proceedings of the 2nd International Workshop on RFID Technology - Concepts, Applications, Challenges - Volume 1: IWRT, (ICEIS 2008) ISBN 978-989-8111-46-3, pages 63-72. DOI: 10.5220/0001733400630072


in Bibtex Style

@conference{iwrt08,
author={Guénaël Cabanes and Younès Bennani and Claire Chartagnat and Dominique Fresneau},
title={Topographic Connectionist Unsupervised Learning for RFID Behavior Data Mining},
booktitle={Proceedings of the 2nd International Workshop on RFID Technology - Concepts, Applications, Challenges - Volume 1: IWRT, (ICEIS 2008)},
year={2008},
pages={63-72},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001733400630072},
isbn={978-989-8111-46-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Workshop on RFID Technology - Concepts, Applications, Challenges - Volume 1: IWRT, (ICEIS 2008)
TI - Topographic Connectionist Unsupervised Learning for RFID Behavior Data Mining
SN - 978-989-8111-46-3
AU - Cabanes G.
AU - Bennani Y.
AU - Chartagnat C.
AU - Fresneau D.
PY - 2008
SP - 63
EP - 72
DO - 10.5220/0001733400630072