FINE-GRAINED PERFORMANCE EVALUATION AND MONITORING USING ASPECTS - A Case Study on the Development of Data Mining Techniques

Fernando Berzal, Juan-Carlos Cubero, Aída Jiménez

Abstract

This paper illustrates how aspect-oriented programming techniques support the I/O performance evaluation and monitoring of alternative data mining techniques. Without having to modify the source code of the system under analysis, aspects provide an unintrusive mechanism to perform this kind of analysis, letting us probe a system implementation so that we can identify potential bottlenecks.

References

  1. Berzal, F., Cubero, J. C., Sánchez, D., and Serrano, J. M. (2004). ART: A hybrid classification model. Machine Learning, 54(1):67-92.
  2. Blake, C. and Merz, C. (1998). UCI repository of machine learning databases. Available at http://www.ics.uci.edu/~mlearn/MLRepository.html.
  3. Clark, P. and Boswell, R. (1991). Rule induction with CN2: Some recent improvements. In EWSL, pages 151-163.
  4. Cohen, W. W. (1995). Fast effective rule induction. In Prieditis, A. and Russell, S., editors, Proc. of the 12th International Conference on Machine Learning, pages 115-123, Tahoe City, CA. Morgan Kaufmann.
  5. F ürnkranz, J. and Widmer, G. (1994). Incremental reduced error pruning. In ICML, pages 70-77.
  6. Gehrke, J., Ramakrishnan, R., and Ganti, V. (2000). Rainforest - a framework for fast decision tree construction of large datasets. Data Mining and Knowledge Discovery, 4(2/3):127-162.
  7. Gradecki, J. D. and Lesiecki, N. (2003). Mastering AspectJ: Aspect-Oriented Programming in Java. Wiley.
  8. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. G. (2001). Getting started with aspectj. Communications of the ACM, 44(10):59-65.
  9. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., Loingtier, J.-M., and Irwin, J. (1997). Aspect-oriented programming. In ECOOP'97: 11th European Conference on Object-Oriented Programming, LNCS 1241, pages 220-242.
  10. Laddad, R. (2003). AspectJ in Action: Practical AspectOriented Programming. Manning Publications.
  11. Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1):81-106.
  12. Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.
Download


Paper Citation


in Harvard Style

Berzal F., Cubero J. and Jiménez A. (2008). FINE-GRAINED PERFORMANCE EVALUATION AND MONITORING USING ASPECTS - A Case Study on the Development of Data Mining Techniques . In Proceedings of the Third International Conference on Software and Data Technologies - Volume 3: ICSOFT, ISBN 978-989-8111-53-1, pages 259-262. DOI: 10.5220/0001874902590262


in Bibtex Style

@conference{icsoft08,
author={Fernando Berzal and Juan-Carlos Cubero and Aída Jiménez},
title={FINE-GRAINED PERFORMANCE EVALUATION AND MONITORING USING ASPECTS - A Case Study on the Development of Data Mining Techniques},
booktitle={Proceedings of the Third International Conference on Software and Data Technologies - Volume 3: ICSOFT,},
year={2008},
pages={259-262},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001874902590262},
isbn={978-989-8111-53-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Software and Data Technologies - Volume 3: ICSOFT,
TI - FINE-GRAINED PERFORMANCE EVALUATION AND MONITORING USING ASPECTS - A Case Study on the Development of Data Mining Techniques
SN - 978-989-8111-53-1
AU - Berzal F.
AU - Cubero J.
AU - Jiménez A.
PY - 2008
SP - 259
EP - 262
DO - 10.5220/0001874902590262