HYBRID SYSTEM FOR DATA CLASSIFICATION OF DNA MICROARRAYS WITH GA AND SVM

Mónica Miguélez, Juan Luis Pérez, Juan R. Rabuñal, Julián Dorado

Abstract

This paper proposes a Genetic Algorithm (GA) combined with Support Vector Machine (SVM) for selecting and classifying data from DNA microarrays, with the aim of differentiate healthy from cancerous tissue samples. The proposed GA, by using a SVM fitness function, enables the selection of a group of genes that represent the absence or the presence of cancerous tissue. The proposed method is tested with a group data related to a widely known cancer disease, the breast cancer. The comparison shows that the results obtained with these combined techniques are better than other techniques.

References

  1. Bonilla, D., Duval, B., Hao, J., 2006. A Hybrid GA/SVM Approach for Gene Selection and Classification of Microarray Data. In EvoWorkshops, LNCS 3907: 34- 44.
  2. Brown, M., Grundy, W., Lin, D., Cristianini, N., Sugnet, C., Ares, M., Haussler, D., 1999. Support vector machine classification of microarray gene expression data. University of California, Santa Cruz, Technical Report: Ucsc-Crl-99-09.
  3. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D., 2000. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16(10):906-914.
  4. Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature selection. In Journal of Machine Learning Research, 3:1157-1182.
  5. Guyon, I., Weston, J., Barnhill, S., Vapnik, V., 2002. Gene selection for cancer classification using support vector machines. Machine Learning, 46(1-3): 389-422.
  6. Huang, E., Cheng, SH., Dressman, H., Pittman, J., Tsou, MH., Horng, CF., Bild, A., Iversen, ES., Liao, M., Chen, CM., West, M., Nevins, JR., Huang, AT., 2003. Gene Expression Predictors of Breast Cancer Outcomes. Lancet, 361(9369): 1590-1596.
  7. Lee, Y-J., Mangasarian, O.L., Wolberg, W.H., 2000. Breast cancer survival and chemotherapy: a support vector machine analysis. Dimacs Series In Discrete Mathematics and Theoretical Computer Science, vol 55:1-10.
  8. Nahar, J., Phoebe, Y., Shawkat, ABM., 2007. Microarray classification and rule based cancer identification. In International Conference on Information and Communication Technology. Bangladesh.
  9. Reddy, A.R., Deb, K., 2003. Classification of two-class cancer data reliably using evolutionary algorithms. Technical Report. DanGAL.
  10. Roberts. S., 2005. Using Genetic Algorithms to Select a Subset of Predictive Variables from a HighDimensional Microarray Dataset. Matlab Digest.
  11. Sewell M., 2008. Martin Sewell web site. http://martinsewell.com/
Download


Paper Citation


in Harvard Style

Miguélez M., Luis Pérez J., R. Rabuñal J. and Dorado J. (2008). HYBRID SYSTEM FOR DATA CLASSIFICATION OF DNA MICROARRAYS WITH GA AND SVM . In Proceedings of the Third International Conference on Software and Data Technologies - Volume 3: ICSOFT, ISBN 978-989-8111-53-1, pages 304-307. DOI: 10.5220/0001890803040307


in Bibtex Style

@conference{icsoft08,
author={Mónica Miguélez and Juan Luis Pérez and Juan R. Rabuñal and Julián Dorado},
title={HYBRID SYSTEM FOR DATA CLASSIFICATION OF DNA MICROARRAYS WITH GA AND SVM},
booktitle={Proceedings of the Third International Conference on Software and Data Technologies - Volume 3: ICSOFT,},
year={2008},
pages={304-307},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001890803040307},
isbn={978-989-8111-53-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Software and Data Technologies - Volume 3: ICSOFT,
TI - HYBRID SYSTEM FOR DATA CLASSIFICATION OF DNA MICROARRAYS WITH GA AND SVM
SN - 978-989-8111-53-1
AU - Miguélez M.
AU - Luis Pérez J.
AU - R. Rabuñal J.
AU - Dorado J.
PY - 2008
SP - 304
EP - 307
DO - 10.5220/0001890803040307