CONSTRAINT PROGRAMMING CAN HELP ANTS SOLVING HIGHLY CONSTRAINTED COMBINATORIAL PROBLEMS

Broderick Crawford, Carlos Castro, Eric Monfroy

Abstract

In this paper, we focus on the resolution of Set Partitioning Problem. We try to solve it with Ant Colony Optimization algorithms and Hybridizations of Ant Colony Optimization with Constraint Programming techniques. We recognize the difficulties of pure Ant Algorithms solving strongly constrained problems. Therefore, we explore the addition of Constraint Programming mechanisms in the construction phase of the ants so they can complete their solutions. Computational results solving some test instances are presented showing the advantages to use this kind of hybridization.

References

  1. Alexandrov, D. and Kochetov, Y. (2000). Behavior of the ant colony algorithm for the set covering problem. In Proc. of Symp. Operations Research, pages 255-260. Springer Verlag.
  2. Apt, K. R. (2003). Principles of Constraint Programming. Cambridge University Press.
  3. Beasley, J. E. (1990). Or-library:distributing test problem by electronic mail. Journal of Operational Research Society, 41(11):1069-1072.
  4. Beasley, J. E. and Chu, P. C. (1996). A genetic algorithm for the set covering problem. European Journal of Operational Research, 94(2):392-404.
  5. Chu, P. C. and Beasley, J. E. (1998). Constraint handling in genetic algorithms: the set partitoning problem. Journal of Heuristics, 4:323-357.
  6. Dechter, R. and Frost, D. (2002). Backjump-based backtracking for constraint satisfaction problems. Artificial Intelligence, 136:147-188.
  7. Dorigo, M., Birattari, M., Blum, C., Gambardella, L. M., Mondada, F., and Stützle, T., editors (2004). Ant Colony Optimization and Swarm Intelligence, 4th International Workshop, ANTS 2004, Brussels, Belgium, September 5 - 8, 2004, Proceedings, volume 3172 of Lecture Notes in Computer Science. Springer.
  8. Dorigo, M., Caro, G. D., and Gambardella, L. M. (1999). Ant algorithms for discrete optimization. Artificial Life, 5:137-172.
  9. Dorigo, M. and Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1):53-66.
  10. Dorigo, M. and Stutzle, T. (2004). Ant Colony Optimization. MIT Press, USA.
  11. Focacci, F., Laburthe, F., and Lodi, A. (2002). Local search and constraint programming. In Handbook of metaheuristics. Kluwer.
  12. Gagne, C., Gravel, M., and Price, W. (2001). A lookahead addition to the ant colony optimization metaheuristic and its application to an industrial scheduling problem. In et al., J. S., editor, Proceedings of the fourth Metaheuristics International Conference MIC'01, pages 79-84.
  13. Gandibleux, X., Delorme, X., and T'Kindt, V. (2004). An ant colony optimisation algorithm for the set packing problem. In (Dorigo et al., 2004), pages 49-60.
  14. Hadji, R., Rahoual, M., Talbi, E., and Bachelet, V. (2000). Ant colonies for the set covering problem. In et al., M. D., editor, ANTS 2000, pages 63-66.
  15. Kotecha, K., Sanghani, G., and Gambhava, N. (2004). Genetic algorithm for airline crew scheduling problem using cost-based uniform crossover. In Second Asian Applied Computing Conference, AACC 2004, volume 3285 of Lecture Notes in Artificial Intelligence, pages 84-91, Kathmandu, Nepal. Springer.
  16. Leguizamón, G. and Michalewicz, Z. (1999). A new version of ant system for subset problems. In Congress on Evolutionary Computation, CEC'99, pages 1459- 1464, Piscataway, NJ, USA. IEEE Press.
  17. Lessing, L., Dumitrescu, I., and Stützle, T. (2004). A comparison between aco algorithms for the set covering problem. In (Dorigo et al., 2004), pages 1-12.
  18. Levine, D. (1994). A parallel genetic algorithm for the set partitioning problem. Technical Report ANL94/23 Argonne National Laboratory. Available at http://citeseer.ist.psu.edu/levine94parallel.html.
  19. Maniezzo, V. and Milandri, M. (2002). An ant-based framework for very strongly constrained problems. In Dorigo, M., Caro, G. D., and Sampels, M., editors, Ant Algorithms, volume 2463 of Lecture Notes in Computer Science, pages 222-227. Springer.
  20. Meyer, B. and Ernst, A. (2004). Integrating aco and constraint propagation. In (Dorigo et al., 2004), pages 166-177.
  21. Michel, R. and Middendorf, M. (1998). An island model based ant system with lookahead for the shortest supersequence problem. In Lecture notes in Computer Science, Springer Verlag, volume 1498, pages 692- 701.
Download


Paper Citation


in Harvard Style

Crawford B., Castro C. and Monfroy E. (2008). CONSTRAINT PROGRAMMING CAN HELP ANTS SOLVING HIGHLY CONSTRAINTED COMBINATORIAL PROBLEMS . In Proceedings of the Third International Conference on Software and Data Technologies - Volume 1: ICSOFT, ISBN 978-989-8111-51-7, pages 380-383. DOI: 10.5220/0001892403800383


in Bibtex Style

@conference{icsoft08,
author={Broderick Crawford and Carlos Castro and Eric Monfroy},
title={CONSTRAINT PROGRAMMING CAN HELP ANTS SOLVING HIGHLY CONSTRAINTED COMBINATORIAL PROBLEMS},
booktitle={Proceedings of the Third International Conference on Software and Data Technologies - Volume 1: ICSOFT,},
year={2008},
pages={380-383},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001892403800383},
isbn={978-989-8111-51-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Software and Data Technologies - Volume 1: ICSOFT,
TI - CONSTRAINT PROGRAMMING CAN HELP ANTS SOLVING HIGHLY CONSTRAINTED COMBINATORIAL PROBLEMS
SN - 978-989-8111-51-7
AU - Crawford B.
AU - Castro C.
AU - Monfroy E.
PY - 2008
SP - 380
EP - 383
DO - 10.5220/0001892403800383