AN EFFICIENT MULTIPLICATION ALGORITHM USING BINOMIAL RESIDUE REPRESENTATION

Yin Li, Christophe Negre

Abstract

In this paper, we propose an extension of the algorithm proposed by Bajard, Imbert and Negre in (Bajar et al., 2006), refered as BIN algorithm. We use binomial residue representation of field elements instead of the Lagrange representation of (Bajar et al., 2006). Specifically, every elements in Fpk is represented by a set of residue modulo fixed binomials. We propose two versions of our algorithm, one in general form with a sub-quadratic complexity equal to O(k1.5 ) operations in Fp . The second one is optimized with the use of FFT. In this case the cost is O(k log(k)) operations in Fp . For fields GF ( pk ) suitable for elliptic curve cryptography our algorithm roughly improves the time delay of (Bajar et al., 2006) by 45%.

References

  1. Bailey, D. V. and Paar, C. (1998). Optimal extension field for fast arithmetic in public key algorithm. In Advances in Cryptology-CRYPTO'98, volume 1462 of LNCS, pages 472-485. Springer-Verlag.
  2. Table 4: Explicit comparison.
  3. Bajar, J. C., Imbert, L., and Negre, C. (2006). Arithmetic operation in finite fields of medium prime characteristic using the Lagrange representation.
  4. Halbutog?ullari, A. and C¸ . K. Koc¸ (2000). Parallel multipliers using polynomial residue arithmetic. Designs, Codes and Cryptography, pages 155-173.
  5. Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203-209.
  6. Lidl, R. and Niederreiter, H. (1994). Introduction to Finite Fields and Their Applications. Cambridge Univ. Press.
  7. Lim, C. H. and Hwang, H. S. (2000). Fast implementation of elliptic curve arithmetic in GF(pn). Public Key Cryptography, 1751:405-421.
  8. Miller, V. (1986). Uses of elliptic curve in cryptography. In Advances in Cryptology, Proc. CRYPTO'8, pages 417-428.
  9. Montgomery, P. L. (1985). Modular multiplication without trial division. Mathematics of Computation, pages 519-521.
  10. Negre, C. (2006). Finite field multiplication in lagrange representation using fast fourier transform. In International Conference on Security and Cryptography, SECRYPT 2006.
  11. von zur Gathen, J. and Gerhard, J. (1999). Modern computer algebra. Cambridge University Press, New York, NY, USA.
Download


Paper Citation


in Harvard Style

Li Y. and Negre C. (2008). AN EFFICIENT MULTIPLICATION ALGORITHM USING BINOMIAL RESIDUE REPRESENTATION . In Proceedings of the International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2008) ISBN 978-989-8111-59-3, pages 319-324. DOI: 10.5220/0001924503190324


in Bibtex Style

@conference{secrypt08,
author={Yin Li and Christophe Negre},
title={AN EFFICIENT MULTIPLICATION ALGORITHM USING BINOMIAL RESIDUE REPRESENTATION},
booktitle={Proceedings of the International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2008)},
year={2008},
pages={319-324},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001924503190324},
isbn={978-989-8111-59-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2008)
TI - AN EFFICIENT MULTIPLICATION ALGORITHM USING BINOMIAL RESIDUE REPRESENTATION
SN - 978-989-8111-59-3
AU - Li Y.
AU - Negre C.
PY - 2008
SP - 319
EP - 324
DO - 10.5220/0001924503190324