FAR-END CROSSTALK IN ITERATIVELY DETECTED MIMO-OFDM TWISTED PAIR TRANSMISSION SYSTEMS

Andreas Ahrens, Christoph Lange

Abstract

Crosstalk between neighbouring wire pairs in multi-pair copper cables is an important disturbance, which essentially limits the transmission quality and the throughput of such cables. For high-rate transmission, often the strong near-end crosstalk (NEXT) disturbance is avoided or suppressed and only the far-end crosstalk (FEXT) remains as crosstalk influence. In this contribution the effect of far-end crosstalk (FEXT) in iteratively detected MIMO-OFDM transmission schemes is studied. EXIT (extrinsic information transfer) charts are used for analyzing and optimizing the convergence behaviour of the iterative demapping and decoding.

References

  1. Ahrens, A., Kühn, V., and Weber, T. (2008). Iterative Detection for Spatial Multiplexing with Adaptive Power Allocation. In 7th International Conference on Source and Channel Coding (SCC), Ulm.
  2. Ahrens, A. and Lange, C. (2006). Optimal Power Allocation in a MIMO-OFDM Twisted Pair Transmission System with Far-End Crosstalk. In International Conference on Signal Processing and Multimedia Applications (SIGMAP), Setúbal (Portugal).
  3. Aslanis, J. T. and Cioffi, J. M. (1992). Achievable Information Rates on Digital Subscriber Loops: Limiting Information Rates with Crosstalk Noise. IEEE Transactions on Communications, 40(2):361-372.
  4. Bahai, A. R. S. and Saltzberg, B. R. (1999). Multi-Carrier Digital Communications - Theory and Applications of OFDM. Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht, London, Moskau.
  5. Bingham, J. A. C. (2000). ADSL, VDSL, and Multicarrier Modulation. Wiley, New York.
  6. Brink, S. t. (2001). Convergence Behavior of Iteratively Decoded Parallel Concatenated Codes. IEEE Transactions on Communications, 49(10):1727-1737.
  7. Chindapol, A. Ritcey, J. A. (2001). Design, Analysis, and Performance Evaluation for BICM-ID withsquare QAM Constellations in Rayleigh Fading Channels. IEEE Journal on Selected Areas in Communications, 19(5):944-957.
  8. Forney, G. D., Gallager, R. G., Lang, G. R., Longstaff, F. M., and Qureshi, S. U. (1984). Efficient Modulation for Band-Limited Channels. IEEE Journal on Selected Areas in Communications, 2(5):632-647.
  9. Galli, S. and Kerpez, K. J. (2002a). Methods of Summing Crosstalk From Mixed Sources-Part I: Theoretical Analysis. IEEE Transactions on Communications, 50(3):453-461.
  10. Galli, S. and Kerpez, K. J. (2002b). Methods of Summing Crosstalk From Mixed Sources-Part II: Performance Results. IEEE Transactions on Communications, 50(4):600-607.
  11. Honig, M. L., Steiglitz, K., and Gopinath, B. (1990). Multichannel Signal Processing for Data Communications in the Presence of Crosstalk. IEEE Transactions on Communications, 38(4):551-558.
  12. ITU-T Recommendation G.993.2 (2006). Very high speed digital subscriber line transceivers 2 (VDSL2). International Telecommunication Union, Geneva.
  13. Kalet, I. (1987). Optimization of Linearly Equalized QAM. IEEE Transactions on Communications, 35(11):1234-1236.
  14. Kalet, I. (1989). The Multitone Channel. IEEE Transactions on Communications, 37(2):119-124.
  15. Kalet, I. and Shamai (Shitz), S. (1990). On the Capacity of a Twisted-Wire Pair: Gaussian Model. IEEE Transactions on Communications, 38(3):379-383.
  16. Kreß, D. and Krieghoff, M. (1973). Elementare Approximation und Entzerrung bei der Ü bertragung von PCM-Signalen über Koaxialkabel. Nachrichtentechnik Elektronik, 23(6):225-227.
  17. Lange, C. and Ahrens, A. (2005). Effect of Far-End Crosstalk in Multi-Pair Symmetric Copper Cables. In XXI Krajowe Sympozjum Telekomunikacji (KST), pages 181-190, Bydgoszcz (Poland).
  18. Proakis, J. G. (2000). Digital Communications. McGrawHill, Boston.
  19. Raleigh, G. G. and Cioffi, J. M. (1998). Spatio-Temporal Coding for Wireless Communication. IEEE Transactions on Communications, 46(3):357-366.
  20. Raleigh, G. G. and Jones, V. K. (1999). Multivariate Modulation and Coding for Wireless Communication. IEEE Journal on Selected Areas in Communications, 17(5):851-866.
  21. Valenti, C. (2002). NEXT and FEXT Models for TwistedPair North American Loop Plant. IEEE Journal on Selected Areas in Communications, 20(5):893-900.
Download


Paper Citation


in Harvard Style

Ahrens A. and Lange C. (2008). FAR-END CROSSTALK IN ITERATIVELY DETECTED MIMO-OFDM TWISTED PAIR TRANSMISSION SYSTEMS . In Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2008) ISBN 978-989-8111-60-9, pages 39-46. DOI: 10.5220/0001931300390046


in Bibtex Style

@conference{sigmap08,
author={Andreas Ahrens and Christoph Lange},
title={FAR-END CROSSTALK IN ITERATIVELY DETECTED MIMO-OFDM TWISTED PAIR TRANSMISSION SYSTEMS},
booktitle={Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2008)},
year={2008},
pages={39-46},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001931300390046},
isbn={978-989-8111-60-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2008)
TI - FAR-END CROSSTALK IN ITERATIVELY DETECTED MIMO-OFDM TWISTED PAIR TRANSMISSION SYSTEMS
SN - 978-989-8111-60-9
AU - Ahrens A.
AU - Lange C.
PY - 2008
SP - 39
EP - 46
DO - 10.5220/0001931300390046