Pose Clustering From Stereo Data

Ulrich Hillenbrand

Abstract

This article describes an algorithm for pose or motion estimation based on clustering of parameters in the six-dimensional pose space. The parameter samples are computed from data samples randomly drawn from stereo data points. The estimator is global and robust, performing matches to parts of a scene without prior pose information. It is general, in that it does not require any particular object features. Empirical object models can be built largely automatically. An implemented application from the service robotic domain and a quantitative performance study on real data are presented.

References

  1. Harris, C., Stephens, M., A combined corner and edge detector. In: Fourth Alvey Vision Conference. (1988) 147-151
  2. Lowe, D.G., Distinctive image features from scale-invariant keypoints. Intern. J. Comput. Vision 60 (2004) 91-110
  3. Ballard, D.H., Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (1981) 111-122
  4. Stockmann, G., Kopstein, S., Benett, S., Matching images to models for registration and object detection via clustering. IEEE Trans. Pattern Anal. Mach. Intell. 4 (1982) 229-241
  5. Stockmann, G., Object recognition and localization via pose clustering. CVGIP 40 (1987) 361-387
  6. Illingworth, J., Kittler, J., A survey of the Hough transform. CVGIP 44 (1988) 87-116
  7. Moss, S., Wilson, R.C., Hancock, E.R., A mixture model for pose clustering. Patt. Recogn. Let. 20 (1999) 1093-1101
  8. Hillenbrand, U., Consistent parameter clustering: definition and analysis. Pattern Recogn. Let. 28 (2007) 1112-1122
  9. Stewart, C.V., Robust parameter estimation in computer vision. SIAM Review 41 (1999) 513-537
  10. Hirschmüller, H., Innocent, P.R., Garibaldi, J., Real-time correlation-based stereo vision with reduced border errors. Int. J. Computer Vision 47 (2002) 229-246
  11. Horn, B.K.P., Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 4 (1987) 629-642
  12. Comaniciu, D., Meer, P., Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002) 603-619
  13. Ott, C., Eiberger, O., Friedl, W., Bäuml, B., Hillenbrand, U., Borst, C., Albu-Schäffer, A., Brunner, B., Hirschmüller, H., Kielhöfer, S., Konietschke, R., Suppa, M., Wimböck, T., Zacharias, F., Hirzinger, G., A humanoid two-arm system for dexterous manipulation. In: Proc. IEEE-RAS International Conference on Humanoid Robots. (2006) 276-283
Download


Paper Citation


in Harvard Style

Hillenbrand U. (2008). Pose Clustering From Stereo Data . In VISAPP-Robotic Perception - Volume 1: VISAPP-RoboPerc, (VISIGRAPP 2008) ISBN 978-989-8111-23-4, pages 23-32. DOI: 10.5220/0002341900230032


in Bibtex Style

@conference{visapp-roboperc08,
author={Ulrich Hillenbrand},
title={Pose Clustering From Stereo Data},
booktitle={VISAPP-Robotic Perception - Volume 1: VISAPP-RoboPerc, (VISIGRAPP 2008)},
year={2008},
pages={23-32},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002341900230032},
isbn={978-989-8111-23-4},
}


in EndNote Style

TY - CONF
JO - VISAPP-Robotic Perception - Volume 1: VISAPP-RoboPerc, (VISIGRAPP 2008)
TI - Pose Clustering From Stereo Data
SN - 978-989-8111-23-4
AU - Hillenbrand U.
PY - 2008
SP - 23
EP - 32
DO - 10.5220/0002341900230032