MAGNETOMETRY USING ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN A ROOM TEMPERATURE VAPOUR CELL - Developing an Optical Magnetometer that Utilises the Steep Dispersion Curve Observed in EIT to Detect Ti

Melody R. Blackman, Benjamin T. H. Varcoe

Abstract

The physiological importance of magnetic signals within biological systems has been investigated with ever increasing sensitivities over the last decade. Currently superconducting quantum interference devices (SQUIDs) are at the forefront of bio-magnetic diagnostics. In this research we aim to build an optics based magnetometer that can compete with the sensitivity of the SQUID but that runs at a lower start up and operational cost. To do this we intend to use the steep dispersion curve observed in the atomic physics effect electromagnetically induced transparency. This magnetometer can operate at room temperature, its design is a convenient method for monitoring bio-magnetic fields, making this technology an affordable technique for further bio-magnetic diagnostics.

References

  1. Belfi, J., Bevilacqua, G., Biancalana, V., Dancheva, Y., and Moi, L. (2007). All optical sensor for automated magnetometry based on coherent population trapping.
  2. Bison, G., Wynands, R., and Weis, A. (2003). Dynamical mapping of the human cardiomagnetic field with a room-temperature, laser-optical sensor. Opt. Express, 11(8):904-909.
  3. Bloom, A. L. (1962). Principles of operation of the rubidium vapor magnetometer. Appl. Opt., 1(1):61-68.
  4. Boller, K. J., Imamolu, A., and Harris, S. E. (1991). Observation of electromagnetically induced transparency. Physical Review Letters, 66(20):2593+.
  5. Budker, D., Kimball, D. F., Rochester, S. M., Yashchuk, V. V., and Zolotorev, M. (2000). Sensitive magnetometry based on nonlinear magneto-optical rotation. Physical Review A, 62(4):043403+.
  6. Cohen-Tannoudji, C., Dupont-Roc, J., Haroche, S., and Laloë, F. (1969). Detection of the static magnetic field produced by the oriented nuclei of optically pumped he3 gas. Physical Review Letters, 22(15):758+.
  7. Comani, S., Mantini, D., Alleva, G., Di, L. S., and Romani, G. L. (2004). Fetal magnetocardiographic mapping using independent component analysis. Institute of Physics Publishing Physiological Measurement.
  8. Fagaly, R. L. (2006). Superconducting quantum interference device instruments and applications. Review of Scientific Instruments, 77(10).
  9. Fenici, R., Romani, G., and Erné, S. (1983). Highresolution magnetic measurements of human cardiac electrophysiological events. Il Nuovo Cimento D, 2(2):231-247.
  10. Fleischhauer, M., Imamoglu, A., and Marangos, J. P. (2005). Electromagnetically induced transparency: Optics in coherent media. Reviews of Modern Physics, 77(2).
  11. Fleischhauer, M. and Scully, M. O. (1994). Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence. Physical Review A, 49(3):1973+.
  12. Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., and Lounasmaa, O. V. (1993). Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65(2):413+.
  13. Harris, S. E. (1997). Electromagnetically induced transparency. In Quantum Electronics and Laser Science Conference, 1997. QELS 7897., Summaries of Papers Presented at the, page 25.
  14. Kominis, I. K., Kornack, T. W., Allred, J. C., and Romalis, M. V. (2003). A subfemtotesla multichannel atomic magnetometer. Nature, 422(6932):596-599.
  15. Nagel, A., Graf, L., Naumov, A., Mariotti, E., Biancalana, V., Meschede, D., and Wynands, R. (1998). Experimental realization of coherent dark-state magnetometers. Europhysics Letters, pages 31-36.
  16. Nash, M. P., Bradley, C. P., Kardos, A., Pullan, A. J., and Paterson, D. J. (2002). An experimental model to correlate simultaneous body surface and epicardial electropotential recordings in vivo. Chaos, Solitons & Fractals, 13(8):1735-1742.
  17. Ramanathan, C., Ghanem, R. N., Jia, P., Ryu, K., and Rudy, Y. (2004). Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat Med, 10(4):422-428.
  18. Scully, M. O. (1991). Enhancement of the index of refraction via quantum coherence. Physical Review Letters, 67(14):1855+.
  19. Vodel, W. and Makiniemi, K. (1992). An ultra low noise dc squid system for biomagnetic research. Measurement Science and Technology, 3(12):1155-1160.
Download


Paper Citation


in Harvard Style

R. Blackman M. and T. H. Varcoe B. (2009). MAGNETOMETRY USING ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN A ROOM TEMPERATURE VAPOUR CELL - Developing an Optical Magnetometer that Utilises the Steep Dispersion Curve Observed in EIT to Detect Ti . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2009) ISBN 978-989-8111- 64-7, pages 173-177. DOI: 10.5220/0001434501730177


in Bibtex Style

@conference{biodevices09,
author={Melody R. Blackman and Benjamin T. H. Varcoe},
title={MAGNETOMETRY USING ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN A ROOM TEMPERATURE VAPOUR CELL - Developing an Optical Magnetometer that Utilises the Steep Dispersion Curve Observed in EIT to Detect Ti},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2009)},
year={2009},
pages={173-177},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001434501730177},
isbn={978-989-8111- 64-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2009)
TI - MAGNETOMETRY USING ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN A ROOM TEMPERATURE VAPOUR CELL - Developing an Optical Magnetometer that Utilises the Steep Dispersion Curve Observed in EIT to Detect Ti
SN - 978-989-8111- 64-7
AU - R. Blackman M.
AU - T. H. Varcoe B.
PY - 2009
SP - 173
EP - 177
DO - 10.5220/0001434501730177