CONTEXT-DRIVEN ONTOLOGICAL ANNOTATIONS IN DICOM IMAGES - Towards Semantic PACS

Manuel Möller, Saikat Mukherjee

Abstract

The enormous volume of medical images and the complexity of clinical information systems make searching for relevant images a challenging task. We describe techniques for annotating and searching medical images using ontological semantic concepts. In contrast to extant multimedia semantic annotation work, our technique uses the context from mappings between multiple ontologies to constrain the semantic space and quickly identify relevant concepts. We have implemented a system using the FMA and RadLex anatomical ontologies, the ICD disease taxonomy, and have coupled the techniques with the DICOM standard for easy deployment in current PAC environments. Preliminary quantitative and qualitative experiments validate the effectiveness of the techniques.

References

  1. Buitelaar, P., Sintek, M., and Kiesel, M. (2006). A lexicon model for multilingual/multimedia ontologies. In Proceedings of the 3rd European Semantic Web Conference (ESWC06), Budva, Montenegro.
  2. Carneiro, G., Chan, A. B., Moreno, P. J., and Vasconcelos, N. (2007). Supervised learning of semantic classes for image annotation and retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(3):394-410.
  3. Hayes, P. (2004). RDF semantics. W3C Recommendation.
  4. Kahn, C. E., Channin, D. S., and Rubin, D. L. (2006). An ontology for pacs integration. J. Digital Imaging, 19(4):316-327.
  5. McGuinness, D. L. and van Harmelen, F. (2004). OWL Web Ontology Language overview. W3C recommendation, World Wide Web Consortium.
  6. Möller, M., Tuot, C., and Sintek, M. (2008). A scientific workflow platform for generic and scalable object recognition on medical images. In Tolxdorff, T., Braun, J., Deserno, T., Handels, H., Horsch, A., and Meinzer, H.-P., editors, Bildverarbeitung für die Medizin. Algorithmen, Systeme, Anwendungen, Berlin, Germany. Springer.
  7. Noy, N. F. and Rubin., D. L. (2007). Translating the Foundational Model of Anatomy into OWL. In Stanford Medical Informatics Technical Report.
  8. Rosse, C. and Mejino, R. L. V. (2003). A reference ontology for bioinformatics: The foundational model of anatomy. In Journal of Biomedical Informatics, volume 36, pages 478-500.
  9. Rubin, D. (2007). Creating and curating a terminology for radiology: Ontology modeling and analysis. Journal of Digital Imaging, 12(4):920-927.
  10. Rubin, D. L., Mongkolwat, P., Kleper, V., Supekar, K., and Channin, D. S. (2008). Medical imaging on the semantic web: Annotation and image markup. In AAAI Spring Symposium Series. Stanford University.
  11. Su, L., Sharp, B., and Chibelushi, C. (2002). Knowledgebased image understanding: A rule-based production system for X-ray segmentation. In Proceedings of Fourth International Conference on Enterprise Information System, volume 1, pages 530-533, Ciudad Real, Spain.
Download


Paper Citation


in Harvard Style

Möller M. and Mukherjee S. (2009). CONTEXT-DRIVEN ONTOLOGICAL ANNOTATIONS IN DICOM IMAGES - Towards Semantic PACS . In Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2009) ISBN 978-989-8111-63-0, pages 294-299. DOI: 10.5220/0001550202940299


in Bibtex Style

@conference{healthinf09,
author={Manuel Möller and Saikat Mukherjee},
title={CONTEXT-DRIVEN ONTOLOGICAL ANNOTATIONS IN DICOM IMAGES - Towards Semantic PACS},
booktitle={Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2009)},
year={2009},
pages={294-299},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001550202940299},
isbn={978-989-8111-63-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2009)
TI - CONTEXT-DRIVEN ONTOLOGICAL ANNOTATIONS IN DICOM IMAGES - Towards Semantic PACS
SN - 978-989-8111-63-0
AU - Möller M.
AU - Mukherjee S.
PY - 2009
SP - 294
EP - 299
DO - 10.5220/0001550202940299