Elisabetta Delponte, Curzio Basso, Francesca Odone, Enrico Puppo


In this paper we propose a technique that combines a classification method from the statistical learning literature with a conventional approach to shape retrieval. The idea that we pursue is to improve both results and performance by filtering the database of shapes before retrieval with a shape classifier, which allows us to keep only the shapes belonging to the classes most similar to the query shape. The experimental analysis that we report shows that our approach improves the computational cost in the average case, and leads to better results.


  1. Akgul, C. B., Sankur, B., Yemez, Y., and Schmitt, F. (2008). Similarity score fusion by ranking risk minimization for 3d object retrieval. In Eurographics workshop on 3D object retrieval.
  2. Barutcuoglu, Z. and DeCoro, C. (2006). Hierarchical shape classification using bayesian aggregation. In SMI 7806: Proceedings of the IEEE International Conference on Shape Modeling and Applications 2006, page 44, Washington, DC, USA. IEEE Computer Society.
  3. Bishop, C. (2006). Pattern Recognition and Machine Learning. Springer.
  4. Caponnetto, A. and De Vito, E. (2006). Optimal rates for regularized least-squares algorithm. Found. Comput. Math. In Press, DOI 10.1007/s10208-006-0196-8, Online August 2006.
  5. Elad, M., Tal, A., and Ar, S. (2001). Content based retrieval of vrml objects: an iterative and interactive approach. In Proceedings of the sixth Eurographics workshop on Multimedia 2001, pages 107-118, New York, NY, USA. Springer-Verlag New York, Inc.
  6. Gal, R., Shamir, A., and Cohen-Or, D. (2007). Poseoblivious shape signature. IEEE Transactions on Visualization and Computer Graphics, 13(2):261-271.
  7. Hou, S., Lou, K., and Ramani, K. (2005). SVMbased semantic clustering and retrieval of a 3d model database. Computer Aided Design and Applications, 2(1-4):155-164.
  8. Jebara, T., Kondor, R. I., and Howard, A. (2004). Probability product kernels. Journal of Machine Learning Research, 5:819-844.
  9. Joachims, T. (1999). Making large-scale svm learning practical.
  10. Leifman, G., Meir, R., and Tal, A. (2005). Semanticoriented 3d shape retrieval using relevance feedback. The Visual Computer.
  11. Leng, B., Qin, Z., and Li, L. (2007). Support vector machine active learning for 3d model retrieval. Journal of Zhejiang University SCIENCE A, 8(12):1953-1961.
  12. Lo Gerfo, L., Rosasco, L., Odone, F., De Vito, E., and Verri, A. (2008). Spectral algorithms for supervised learning. Neural Computation, 20:1873-1897.
  13. Novotni, M., Park, G., Wessel, R., and Klein, R. (2005). Evaluation of kernel based methods for relevance feedback in 3d shape retrieval. In Proceedings 4th Int. Workshop on Content-based Multimedia Indexing, Riga, Latvia.
  14. Odone, F., Barla, A., and Verri, A. (2005). Building kernels from binary strings for image matching. IEEE Transactions on Image Processing, 14(2):169-180.
  15. Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D. (2002). Shape distributions. ACM Trans. Graph., 21(4):807-832.
  16. Rifkin, R., Yeo, G., and Poggio, T. (2003). Regularized least-squares classification.
  17. Shilane, P., Min, P., Kazhdan, M., and Funkhouser, T. (2004). The princeton shape benchmark. In SMI 7804: Proceedings of the Shape Modeling International 2004, pages 167-178, Washington, DC, USA. IEEE Computer Society.
  18. Taylor, J. S. and Cristianini, N. (2004). Kernel Methods for Pattern Analysis. Cambridge University Press.
  19. Vapnik, V. (1998). Statistical learning theory. Adaptive and learning system for signal processing, communication and control. John Wiley and Sons Inc.
  20. Xu, D. and Li, H. (2007). 3D shape retrieval integrated with classification information. In Proceedings of the Fourth International Conference on Image and Graphics, pages 774-779, Washington, DC, USA. IEEE Computer Society.

Paper Citation

in Harvard Style

Delponte E., Basso C., Odone F. and Puppo E. (2009). IMPROVING 3D SHAPE RETRIEVAL WITH SVM . In Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2009) ISBN 978-989-8111-67-8, pages 46-51. DOI: 10.5220/0001755400460051

in Bibtex Style

author={Elisabetta Delponte and Curzio Basso and Francesca Odone and Enrico Puppo},
booktitle={Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2009)},

in EndNote Style

JO - Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2009)
SN - 978-989-8111-67-8
AU - Delponte E.
AU - Basso C.
AU - Odone F.
AU - Puppo E.
PY - 2009
SP - 46
EP - 51
DO - 10.5220/0001755400460051