AUTOMATIC TRIMAP EXTRACTION FOR EFFICIENT ALPHA MATTING BASED ON GRADIENT FIELD TRANSFORMS

Sang Min Yoon, Holger Graf

Abstract

Image/Video Matting aims at solving the problem of accurate foreground estimation from a given background within still images or video sequences. The standard alpha matting method starts from a trimap, which separates an input image into three regions: definitely foreground, definitely background, and unknown regions. This paper presents an automatic trimap extraction based on an affine transformation of gradient fields in order to achieve an improved and robust Image/Video matting method. A gradient field based background and foreground segmentation technique provides a trimap extraction, which is robust to changing light conditions within semi-transparent objects. Our proposed background subtraction is based on affine transformed gradient projections of the input and background image and removes the background texture from a given image, preserving the texture of the foreground objects. The presented automatic trimap extraction method reduces the manual labor work in extracting and embedding target objects into a new background image or video sequences and might find its application within the broadcasting or movie industry.

References

  1. Agrawal, A., Raskar, R., Chellappa, R., 2006. Edge suppression by gradient field transformation using crossprojection tensors. In proceeding of IEEE CVPR
  2. Aubert, G., Kornprobst, G., 2002. Mathematical Problems in Image Processing: Partial Differential Equations and the Calcuus of Varations. Applied Mathematical Series, Springer-Verlag.
  3. Barotti, S., Lombardi, L., Lombardi, P., 2003. MultiModule Switching and Fusion for Robust Video Surveillance. In proceeding of IEEE International Conference on Image Analysis and Processing.
  4. Berman, A., Vlahos, P., Dadourian, A., 2000. Comprehensive method for removing from an image the background surrounding. U.S. Patent.
  5. Chuang, Y.-Y., Curless, B., Salesin, D. H., Szeliski, R., 2001. A bayesian approach to digital matting. In proceeding of IEEE CVPR.
  6. Chuang, Y., Agarwala, A., Curless, B., Szeliski, R., 2002. Video matting of complex scenes. ACM Transaction Graph.
  7. Elgammal, A., Harwood, D., Davis, L., 2000. Nonparametric model for background subtraction. In proceeding of ECCV.
  8. Han, B., Comaniciu, D., Davis, L., 2004. Sequential kernel density approximation through mode propagation: applications to background modeling. In proceeding of ACCV.
  9. Ihrke, I., Magnor, M., 2005. GrOVis-Fire: A Multi-Video Sequence for Volumetric Reconstruction and Rendering Research. http://www.mpisb.mpg.de/ ihrke/Projects/Fire/GrOVis Fire/
  10. Joshi, N., Matusik, W., Freeman, W. F., 2007. Exploring Defocus Matting: Non-Parametric Acceleration, Super-Resolution, and Off-Center Matting . IEEE Computer Graphics and Applications.
  11. Levin, A., Linschinski, D., Weiss, Y., 2006. A closed form solution to natural image matting. In proceeding of IEEE CVPR.
  12. Levin, A., Rav-Acha, A., Lischinski, D., 2007. Spectral Matting. In proceeding of IEEE CVPR.
  13. McGuire, M., Matusik, W., Yerazunis, W., 2006. Practical, Real-time Studio Matting using Dual Imagers. In European Symposium on Rendering.
  14. McGuire, M., Matusik, W., Pfister, H., Hughes, J, F., Durand, F., 2005. Defocus Video Matting. In proceeding of ACM SIGGRAPH.
  15. land, A. P., 2000. A bayesian computer vision system for modeling human interactions. IEEE Trans. on PAMI.
  16. Piccardi, M., 2004. Background subtraction techniques: a review. IEEE International Conference on System, Man, and Cybernetics.
  17. Ruzon, M., Tomasi, C., 2000. Alpha estimation in natural images. In proceeding of IEEE CVPR.
  18. Smith, A., Blinn, J., 1996. Blue screen matting. In proceeding of ACM SIGGRAPH.
  19. Stauffer, C., Grimson, W., 1999. Adaptive background mixture models for real-time tracking. In proceeding of IEEE CVPR.
  20. Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y., 2004. Poisson matting. In proceeding of ACM SIGGRAPH.
  21. Tschumperle, D., 2002. PDE's based Regularization of Multivalued Images and Applications. PhD Thesis, Universite de Nice-Sophia Antipolis.
  22. Wang, J., Cohen, M. F., 2007. Image and video matting: a survey. Foundations and Trends in Computer Graphics and Vision.
  23. Weickert, J., 1997. A review of nonlinear diffusion filtering. In Scale-Space Theory in Computer Vision, Springer.
  24. Wren, C., Azarbayejani, A., Darrell, T., Pentland, A. P., 1997. Pfinder: real-time tracking of the human body. IEEE Trans on PAMI.
  25. Zomet, A., Peleg, S., 2002. Multi-sensor super resolution. IEEE workshop on Application of Computer Vision.
Download


Paper Citation


in Harvard Style

Yoon S. and Graf H. (2009). AUTOMATIC TRIMAP EXTRACTION FOR EFFICIENT ALPHA MATTING BASED ON GRADIENT FIELD TRANSFORMS . In Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2009) ISBN 978-989-8111-67-8, pages 52-57. DOI: 10.5220/0001766800520057


in Bibtex Style

@conference{grapp09,
author={Sang Min Yoon and Holger Graf},
title={AUTOMATIC TRIMAP EXTRACTION FOR EFFICIENT ALPHA MATTING BASED ON GRADIENT FIELD TRANSFORMS},
booktitle={Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2009)},
year={2009},
pages={52-57},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001766800520057},
isbn={978-989-8111-67-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2009)
TI - AUTOMATIC TRIMAP EXTRACTION FOR EFFICIENT ALPHA MATTING BASED ON GRADIENT FIELD TRANSFORMS
SN - 978-989-8111-67-8
AU - Yoon S.
AU - Graf H.
PY - 2009
SP - 52
EP - 57
DO - 10.5220/0001766800520057