INTERPOLATORY ADAPTIVE SUBDIVISION FOR MESH LOD EDITING

Daniele Panozzo, Enrico Puppo

Abstract

We propose an adaptive interpolatory scheme for subdivided triangle meshes that is compliant with the modified butterfly subdivision and can be used effectively and efficiently in selective editing of meshes. Our scheme is developed upon the RGB subdivision, an adaptive scheme that is based on the factorization of the one-to-four triangle split pattern. We introduce the concept of topological angle and related operators to efficiently navigate and edit an adaptively subdivided mesh. On the basis of this new scheme, we present an interactive application that allows a user to freely edit the Level of Detail of a model starting at a base mesh.

References

  1. Bank, R., Sherman, A., and Weiser, A. (1983). Refinement algorithms and data structures for regular local mesh refinement. In Stepleman, R., editor, Scientific Computing, pages 3-17. IMACS/North Holland.
  2. Blender (2008). http://www.blender.org/.
  3. Brisson, E. (1993). Representing geometric structures in d dimensions: Topology and order. Discrete and Computational Geometry, 9:387-426.
  4. Kobbelt, L. (2000). p3 subdivision. In Proceedings ACM SIGGRAPH 2000, pages 103-112.
  5. Lübke, D., Reddy, M., Cohen, J., Varshney, A., Watson, B., and Hübner, R. (2002). Level Of Detail for 3D Graphics. Morgan Kaufmann.
  6. Meshlab (2008). http://meshlab.sourceforge.net.
  7. Pakdel, H. and Samavati, F. (2007). Incremental subdivision for triangle meshes. International Journal of Computational Science and Engineering, 3(1):80-92.
  8. Puppo, E. and Panozzo, D. (2008). RGB subdivision. IEEE Transactions on Visualization and Computer Graphics. In press. Electronic version at http: // doi.ieeecomputersociety.org / 10.1109 / TVCG. 2008.87.
  9. Seeger, S., Hormann, K., Häusler, G., and Greiner, G. (2001). A sub-atomic subdivision approach. In Girod, B., Niemann, H., and Seidel, H.-P., editors, Proceedings of Vision, Modeling and Visualization 2001, pages 77-85, Berlin. Akademische Verlag.
  10. Velho, L. (2003). Stellar subdivision grammars. In Proceedings 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pages 188-199.
  11. Velho, L. and Zorin, D. (2001). 4-8 subdivision. ComputerAided Geometric Design, 18:397-427.
  12. Warren, J. and Weimer, H. (2002). Subdivision Methods for Geometric Design. Morgan Kaufmann.
  13. Zorin, D. and Schröder, P., editors (2000). Subdivision for Modeling and Animation (SIGGRAPH 2000 Tutorial N.23 - Course notes). ACM Press.
  14. Zorin, D., Schr öder, P., and Sweldens, W. (1996). Interpolating subdivision for meshes with arbitrary topology. In Comp. Graph. Proc., Annual Conf. Series (SIGGRAPH 96), pages 189-192. ACM Press.
  15. Zorin, D., Schröder, P., and Sweldens, W. (1997). Interactive multiresolution mesh editing. In Comp. Graph. Proc., Annual Conf. Series (SIGGRAPH 97), ACM Press. 259-268.
Download


Paper Citation


in Harvard Style

Panozzo D. and Puppo E. (2009). INTERPOLATORY ADAPTIVE SUBDIVISION FOR MESH LOD EDITING . In Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2009) ISBN 978-989-8111-67-8, pages 70-75. DOI: 10.5220/0001769900700075


in Bibtex Style

@conference{grapp09,
author={Daniele Panozzo and Enrico Puppo},
title={INTERPOLATORY ADAPTIVE SUBDIVISION FOR MESH LOD EDITING},
booktitle={Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2009)},
year={2009},
pages={70-75},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001769900700075},
isbn={978-989-8111-67-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2009)
TI - INTERPOLATORY ADAPTIVE SUBDIVISION FOR MESH LOD EDITING
SN - 978-989-8111-67-8
AU - Panozzo D.
AU - Puppo E.
PY - 2009
SP - 70
EP - 75
DO - 10.5220/0001769900700075