EXPERIMENTAL COMPARISON OF WIDE BASELINE CORRESPONDENCE ALGORITHMS FOR MULTI CAMERA CALIBRATION

Ferid Bajramovic, Michael Koch, Joachim Denzler

Abstract

The quality of point correspondences is crucial for the successful application of multi camera self-calibration procedures. There are several interest point detectors, local descriptors and matching algorithms, which can be combined almost arbitrarily. In this paper, we compare the point correspondences produced by several such combinations. In contrast to previous comparisons, we evaluate the correspondences based on the accuracy of relative pose estimation and multi camera calibration.

References

  1. Bajramovic, F. and Denzler, J. (2008). Global Uncertaintybased Selection of Relative Poses for Multi Camera Calibration. In Proceedings of the British Machine Vision Conference (BMVC), volume 2, pages 745-754.
  2. Brückner, M., Bajramovic, F., and Denzler, J. (2008). Experimental Evaluation of Relative Pose Estimation Algorithms. In Proc. of the Third International Conf. on Computer Vision Theory and Applications (VISAPP), volume 2, pages 431-438.
  3. Engels, C. and Nistér, D. (2005). Global uncertainty in epipolar geometry via fully and partially datadriven sampling. In ISPRS Workshop BenCOS: Towards Benchmarking Automated Calibration, Orientation and Surface Reconstruction from Images, pages 17-22.
  4. Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381-395.
  5. Freeman, W. T. and Adelson, E. H. (1991). The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(9):891-906.
  6. Harris, C. and Stephens, M. J. (1988). A combined corner and edge detector. In Proceedings of The Fourth Alvey Vision Conference, pages 147-151.
  7. Keysers, D., Deselaers, T., and Ney, H. (2004). Pixel-topixel matching for image recognition using hungarian graph matching. In Proceedings of the DAGM Symposium on Pattern Recognition, pages 154-162.
  8. Lindeberg, T. (1998). Feature detection with automatic scale selection. International Journal of Computer Vision, 30(2):79-116.
  9. Lowe, D. G. (2004). Distinctive Image Features from ScaleInvariant Keypoints. International Journal of Computer Vision (IJCV), 60(2):91-110.
  10. Martinec, D. and Pajdla, T. (2007). Robust Rotation and Translation Estimation in Multiview Reconstruction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1-8.
  11. Mikolajczyk, K. and Schmid, C. (2002). An affine invariant interest point detector. In Proceedings of the European Conference on Computer Vision, volume 1, pages 128-142.
  12. Mikolajczyk, K. and Schmid, C. (2005). A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):1615-1630.
  13. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., and van Gool, L. (2005). A comparison of affine region detectors. International J. of Computer Vision, 65(7):43-72.
  14. Stewénius, H., Engels, C., and Nistér, D. (2006). Recent Developments on Direct Relative Orientation. ISPRS Journal of Photogrammetry and Remote Sensing, 60(4):284-294.
  15. Torr, P. and Zisserman, A. (2000). MLESAC: A New Robust Estimator with Application to Estimating Image Geometry. Computer Vision and Image Understanding, 78(19):138-156.
  16. Tukey, J. W. (1977). Exploratory Data Analysis. AddisonWesley, Reading, MA.
  17. Tuytelaars, T. and van Gool, L. J. (2000). Wide Baseline Stereo Matching based on Local, Affinely Invariant Regions. In Proceedings of the British Machine Vision Conference (BMVC), pages 412-425.
  18. van Gool, L. J., Moons, T., and Ungureanu, D. (1996). Affine/photometric invariants for planar intensity patterns. In Proceedings of the European Conference on Computer Vision, volume 1, pages 642-651.
  19. Vedaldi, A. (2007). An open implementation of the SIFT detector and descriptor. Technical Report 070012, UCLA CSD.
  20. Vergés-Llahí, J., Moldovan, D., and Wada, T. (2008). A new reliability measure for essential matrices suitable in multiple view calibration. In Proc. of the Third Int. Conf. on Comp. Vision Theory and Applications (VISAPP), volume 1, pages 114-121.
  21. Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334.
Download


Paper Citation


in Harvard Style

Bajramovic F., Koch M. and Denzler J. (2009). EXPERIMENTAL COMPARISON OF WIDE BASELINE CORRESPONDENCE ALGORITHMS FOR MULTI CAMERA CALIBRATION . In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009) ISBN 978-989-8111-69-2, pages 458-463. DOI: 10.5220/0001786004580463


in Bibtex Style

@conference{visapp09,
author={Ferid Bajramovic and Michael Koch and Joachim Denzler},
title={EXPERIMENTAL COMPARISON OF WIDE BASELINE CORRESPONDENCE ALGORITHMS FOR MULTI CAMERA CALIBRATION},
booktitle={Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009)},
year={2009},
pages={458-463},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001786004580463},
isbn={978-989-8111-69-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009)
TI - EXPERIMENTAL COMPARISON OF WIDE BASELINE CORRESPONDENCE ALGORITHMS FOR MULTI CAMERA CALIBRATION
SN - 978-989-8111-69-2
AU - Bajramovic F.
AU - Koch M.
AU - Denzler J.
PY - 2009
SP - 458
EP - 463
DO - 10.5220/0001786004580463