SIGNIFICANCE OF THE WEIBULL DISTRIBUTION AND ITS SUB-MODELS IN NATURAL IMAGE STATISTICS

Victoria Yanulevskaya, Jan-Mark Geusebroek

Abstract

The contrast statistics of natural images can be adequately characterized by a two-parameter Weibull distribution. Here we show how distinct regimes of this Weibull distribution lead to various classes of visual content. These regimes can be determined using model selection techniques from information theory. We experimentally explore the occurrence of the content classes, as related to the global statistics, local statistics, and to human attended regions. As such, we explicitly link local image statistics and visual content.

References

  1. Akaike, H. (1973). Information Theory and an Extension of the Maximum Likelihood Principle. Int. Sympos. Inform. Theory (pp. 267-281).
  2. Baddeley, R. J. & Tatler, B. W. (2006). High frequency edges (but not contrast) predict where we fixate: A Bayesian system identification analysis. Vision Res., 46(18), 2824-2833.
  3. Burghouts, G. J., Smeulders, A. W. M. & Geusebroek, J. M. (2007). The distribution family of similarity distances. In NIPS.
  4. Burnham, K. P. & Anderson, D. R. (2002). Model selection and multimodel inference: A Practical InformationTheoretic Approach. Springer.
  5. Burnham, K. P. & Anderson, D. R. (2004). Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociological Methods & Research, 33(2), 261.
  6. Field, D. J. (1987). Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am., 4, 2370-2393.
  7. Filliben, J. J. (2002). NIST/SEMATECH e-Handbook of Statistical Methods. http://www.itl.nist.gov/div898/handbook/. NIST, Gaithersburg.
  8. Geusebroek, J. M. & Smeulders, A. W. M. (2003). Fragmentation in the vision of scenes. In ICCV.
  9. Geusebroek, J. M. & Smeulders, A. W. M. (2005). A sixstimulus theory for stochastic texture. Int. J. Comput. Vision, 62(1), 7-16.
  10. van Hateren, J. H. (1998). Independent component filters of natural images compared with simple cells in primary visual cortex. Biological Sciences, 265(1394), 359- 366.
  11. Huang, J. & Mumford, D. (1999). Statistics of natural images and models.
  12. Itti, L., Koch, C. & Niebur, E. (1998). A model of saliencybased visual attention for rapid scene analysis. Trans. Pattern Anal. Machine Intell., 20(11), 1254-1259.
  13. Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. Pattern Anal. Machine Intell., 11(7), 674-693.
  14. Mante, V., Frazor, R. A., Bonin, V., Geisler, W. S. & Carandini, M. (2005). Independence of luminance and contrast in natural scenes and in the early visual system. Nature Neurosci., 8(12), 1690-7.
  15. Nedovic, V., Smeulders, A. W. M., Redert, A. & Geusebroek, J. M. (2007). Depth information by stage classification. In ICCV.
  16. Oliva, A. & Torralba, A. (2001). Modeling the shape of the scene: A holistic representation of the spatial envelope. Int. J. Comput. Vision, 42(3), 145-175.
  17. Pelli, D. G. & Tillman, K. A. (2008). The uncrowded window of object recognition. Nature Neurosc. (p. to appear in october).
  18. Reinagel, P. & Zador, A. (1999). Natural scene statistics at the centre of gaze. Network: Comput. Neural Syst., 10(4), 341-350.
  19. Scholte, H. S., Ghebreab, S., Smeulders, A. W. M. & Lamme, V. (2008). The parvo and magno-cellular systems encode natural image statistics parameters. J. Vision, 8(6), 686a.
  20. Simoncelli, E. P. (1999). Modeling the joint statistics of images in the wavelet domain. Volume 3813 (pp. 188- 195).
  21. Srivastava, A., Lee, A. B., Simoncelli, E. P. & Zhu, S. C. (2003). On Advances in Statistical Modeling of Natural Images. J. Math. Imaging Vision, 18(1), 17-33.
Download


Paper Citation


in Harvard Style

Yanulevskaya V. and Geusebroek J. (2009). SIGNIFICANCE OF THE WEIBULL DISTRIBUTION AND ITS SUB-MODELS IN NATURAL IMAGE STATISTICS . In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2009) ISBN 978-989-8111-69-2, pages 355-362. DOI: 10.5220/0001793203550362


in Bibtex Style

@conference{visapp09,
author={Victoria Yanulevskaya and Jan-Mark Geusebroek},
title={SIGNIFICANCE OF THE WEIBULL DISTRIBUTION AND ITS SUB-MODELS IN NATURAL IMAGE STATISTICS},
booktitle={Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2009)},
year={2009},
pages={355-362},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001793203550362},
isbn={978-989-8111-69-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2009)
TI - SIGNIFICANCE OF THE WEIBULL DISTRIBUTION AND ITS SUB-MODELS IN NATURAL IMAGE STATISTICS
SN - 978-989-8111-69-2
AU - Yanulevskaya V.
AU - Geusebroek J.
PY - 2009
SP - 355
EP - 362
DO - 10.5220/0001793203550362