TEXTURED IMAGE SEGMENTATION BASED ON LOCAL SPECTRAL HISTOGRAM AND ACTIVE CONTOUR

Xianghua Xie

Abstract

In this paper, we propose a novel level set based active contour model to segment textured images. The proposed methods is based on the assumption that local histograms of filtering responses between foreground and background regions are statistically separable. In order to be able to handle texture non-uniformities, which often occur in real world images, we use rotation invariant filtering features and local spectral histograms as image feature to drive the snake segmentation. Automatic histogram bin size selection is carried out so that its underlying distribution can be best represented. Experimental results on both synthetic and real data show promising results and significant improvements compared to direct modeling of filtering responses.

References

  1. Aujol, J., Aubert, G., and Blanc-FĂ©raud, L. (2003). Wavelet-based level set evolution for classification of textured images. IEEE T-IP, 12(12):1634-1641.
  2. Chan, T. and Vese, L. (2001). Active contours without edges. IEEE T-IP, 10(2):266-277.
  3. Geusebroek, J., Smeulders, A., and van de Weijer, J. (2003). Fast anisotropic gauss filtering. IEEE T-IP, 12(8):938-943.
  4. He, Y., Luo, Y., and Hu, D. (2004). Unsupervised texture segmentation via applying geodesic active regions to Gaborian feature space. IEEE Trans. Eng. Comput. Technol., pages 272-275.
  5. Houhou, N. and Thiran, J. (2008). Fast texture segmentation model based on the shape operator and active contour. In IEEE CVPR, pages 1-8.
  6. Jacob, M. and Unser, M. (2004). Design of steerable filters for feature detection using Canny-like criteria. IEEE T-PAMI, 26(8):1007-1019.
  7. Liu, X. and Wang, D. (2003). Texture classification using spectral histograms. IEEE T-IP, 12(6):661-670.
  8. Liu, X. and Wang, D. (2006). Image and texture segmentation using local spectral histograms. IEEE T-IP, 15(10):3066-3077.
  9. Ni, K., Bresson, X., Chan, T., and Esedoglu, S. (2007). Local histogram based segmentation using the Wasserstein distance. In Scale Space and Variational Methods in Computer Vision, pages 697-708.
  10. Paragios, N. and Deriche, R. (2002). Geodesic active regions and level set methods for supervised texture segmentation. IJCV, 46(3):223-247.
  11. Paragios, N., Mellina-Gottardo, O., and Ramesh, V. (2004). Gradient vector flow geometric active contours. IEEE T-PAMI, 26(3):402-407.
  12. Pujol, O. and Radeva, P. (2004). Texture segmentation by statistical deformable models. International Journal of Image and Graphics, 4(3):433-452.
  13. Rousson, M., Brox, T., and Deriche, R. (2004). Active unsupervised texture segmentation on a diffusion based feature space. In IEEE CVPR, pages 1-8.
  14. Rubner, Y., Tomasi, C., and Guibas, L. (1998). A metric for distributions with applications to image databases. In IEEE CVPR, pages 59-66.
  15. Sagiv, C., Sochen, N., and Zeevi, I. (2006). Integrated active contours for texture segmentation. IEEE T-IP, 15(6):1633-1645.
  16. Savelonas, M., Iakovidis, D., and Maroulis, D. (2008). LBP-guided active contours. Pattern Recognition Letters, 29(9):1404-1415.
  17. Shimazaki, H. and Shinomoto, S. (2007). A method for selecting the bin size of a time histogram. Neural Computation, 19(6):1503-1527.
  18. Varma, M. and Zisserman, A. (2002). Classifying images of materials: Achieving viewpoint and illumination independence. In ECCV, pages 255-271.
  19. Xie, X. and Mirmehdi, M. (2008). MAC: Magnetostatic active contour model. IEEE T-PAMI, 30(4):632-646.
  20. Xu, C. and Prince, J. (1998). Snakes, shapes, & gradient vector flow. IEEE T-IP, 7(3):359-369.
Download


Paper Citation


in Harvard Style

Xie X. (2009). TEXTURED IMAGE SEGMENTATION BASED ON LOCAL SPECTRAL HISTOGRAM AND ACTIVE CONTOUR . In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2009) ISBN 978-989-8111-69-2, pages 217-225. DOI: 10.5220/0001805502170225


in Bibtex Style

@conference{visapp09,
author={Xianghua Xie},
title={TEXTURED IMAGE SEGMENTATION BASED ON LOCAL SPECTRAL HISTOGRAM AND ACTIVE CONTOUR},
booktitle={Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2009)},
year={2009},
pages={217-225},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001805502170225},
isbn={978-989-8111-69-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2009)
TI - TEXTURED IMAGE SEGMENTATION BASED ON LOCAL SPECTRAL HISTOGRAM AND ACTIVE CONTOUR
SN - 978-989-8111-69-2
AU - Xie X.
PY - 2009
SP - 217
EP - 225
DO - 10.5220/0001805502170225