FACETED RANKING IN COLLABORATIVE TAGGING SYSTEMS - Efficient Algorithms for Ranking Users based on a Set of Tags

José I. Orlicki, Pablo I. Fierens, J. Ignacio Alvarez-Hamelin

Abstract

Multimedia content is uploaded, tagged and recommended by users of collaborative systems such as YouTube and Flickr. These systems can be represented as tagged-graphs, where nodes correspond to users and taggedlinks to recommendations. In this paper we analyze the online computation of user-rankings associated to a set of tags, called a facet. A simple approach to faceted ranking is to apply an algorithm that calculates a measure of node centrality, say, PageRank, to a subgraph associated with the given facet. This solution, however, is not feasible for online computation. We propose an alternative solution: (i) first, a ranking for each tag is computed offline on the basis of tag-related subgraphs; (ii) then, a faceted order is generated online by merging rankings corresponding to all the tags in the facet. Based on empirical observations, we show that step (i) is scalable. We also present efficient algorithms for step (ii), which are evaluated by comparing their results to those produced by the direct calculation of node centrality based on the facet-dependent graph.

References

  1. Abel, F., Henze, N., and Krause, D. (2008). A Novel Approach to Social Tagging: GroupMe! In the 4th WEBIST.
  2. Al-Khalifa, H. S., Davis, H. C., and Gilbert, L. (2007). Creating structure from disorder: using folksonomies to create semantic metadata. In the 3rd WEBIST.
  3. Al-Saffar, S. and Heileman, G. (2007). Experimental Bounds on the Usefulness of Personalized and TopicSensitive PageRank. In Proc. of the IEEE/WIC/ACM International Conference on Web Intelligence, pages 671-675.
  4. Egg-O-Matic (2008). http://egg-o-matic.itba.edu.ar/.
  5. Eirinaki, M. and Vazirgiannis, M. (2005). Usage-Based PageRank for Web Personalization. In ICDM 7805: Proc. of the Fifth IEEE International Conference on Data Mining, pages 130-137.
  6. Golder, S. and Huberman, B. A. (2006). Usage patterns of collaborative tagging systems. Journal of Information Science, 32(2):198-208.
  7. Guo, Y. Z., Ramamohanarao, K., and Park, L. A. F. (2007). Personalized PageRank for Web Page Prediction Based on Access Time-Length and Frequency. In Proc. of the IEEE/WIC/ACM International Conference on Web Intelligence, pages 687-690.
  8. Haveliwala, T. H. (2002). Topic-sensitive PageRank. In Proc. of the Eleventh International World Wide Web Conference.
  9. Hotho, A., Jäschke, R., Schmitz, C., and Stumme, G. (2006). Information Retrieval in Folksonomies: Search and Ranking. In Proc. of the 3rd European Semantic Web Conference, volume 4011 of LNCS, pages 411-426.
  10. Jeh, G. and Widom, J. (2002). Scaling personalized web search. Technical report, Stanford University.
  11. Kendall, M. G. (1938). A New Measure of Rank Correlation. Biometrika, 30(1/2):81-93.
  12. Langville, A. N. and Meyer, C. D. (2003). Survey: Deeper Inside PageRank. Internet Mathematics, 1(3).
  13. Li, X., Guo, L., and Zhao, Y. E. (2008). Tag-based social interest discovery. pages 675-684. WWW.
  14. Marlow, C., Naaman, M., Boyd, D., and Davis, M. (2006). HT06, tagging paper, taxonomy, Flickr, academic article, to read. In Proc. of the seventeenth conference on Hypertext and hypermedia, pages 31-40.
  15. Newman, M. E. J. (2002). Assortative Mixing in Networks. Phys. Rev. Lett., 89(20):208701.
  16. Page, L., Brin, S., Motwani, R., and Winograd, T. (1998). The Pagerank citation ranking: Bringing order to the web. Technical report, Stanford Digital Library Technologies Project.
  17. Pastor-Satorras, R. and Vespignani, A. (2004). Evolution and structure of the Internet: A statistical physics approach. Cambridge University Press.
  18. Richardson, M. and Domingos, P. (2002). The Intelligent Surfer: Probabilistic Combination of Link and Content Information in PageRank. In Advances in Neural Information Processing Systems 14. MIT Press.
  19. p#32
  20. oT16 8 4 2 5 13 I4n6tersec1ti7o4n Siz6e73 2610 edge-intersection vs. winners-intersection
  21. #p32
  22. oT16 8 4 2 5 13 I4n6tersec1ti7o4n Siz6e73 2610
  23. p#32
  24. oT16 8 4 2
  25. #p32
  26. oT16 8 4 2 5 13 I4n6tersec1ti7o4n Siz6e73 2610
  27. Figure 4: Average similarity (OSim) to edge-intersection
  28. in YouTube. 57 64 I9n3tersec1ti9o7n Siz5e84 2018 7329
  29. Figure 5: Average similarity (OSim) to node-intersection
Download


Paper Citation


in Harvard Style

I. Orlicki J., I. Fierens P. and Ignacio Alvarez-Hamelin J. (2009). FACETED RANKING IN COLLABORATIVE TAGGING SYSTEMS - Efficient Algorithms for Ranking Users based on a Set of Tags . In Proceedings of the Fifth International Conference on Web Information Systems and Technologies - Volume 1: WEBIST, ISBN 978-989-8111-81-4, pages 621-628. DOI: 10.5220/0001826306210628


in Bibtex Style

@conference{webist09,
author={José I. Orlicki and Pablo I. Fierens and J. Ignacio Alvarez-Hamelin},
title={FACETED RANKING IN COLLABORATIVE TAGGING SYSTEMS - Efficient Algorithms for Ranking Users based on a Set of Tags},
booktitle={Proceedings of the Fifth International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,},
year={2009},
pages={621-628},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001826306210628},
isbn={978-989-8111-81-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fifth International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,
TI - FACETED RANKING IN COLLABORATIVE TAGGING SYSTEMS - Efficient Algorithms for Ranking Users based on a Set of Tags
SN - 978-989-8111-81-4
AU - I. Orlicki J.
AU - I. Fierens P.
AU - Ignacio Alvarez-Hamelin J.
PY - 2009
SP - 621
EP - 628
DO - 10.5220/0001826306210628