EVALUATING GENERALIZED ASSOCIATION RULES COMBINING OBJECTIVE AND SUBJECTIVE MEASURES AND VISUALIZATION

Magaly Lika Fujimoto, Veronica Oliveira de Carvalho, Solange Oliveira Rezende

Abstract

Considering the user view, many problems can be found during the post-processing of association rules, since a large number of patterns can be obtained, which complicates the comprehension and identification of interesting knowledge. Thereby, this paper proposes an approach to improve the knowledge comprehensibility and to facilitate the identification of interesting generalized association rules during evaluation. This aid is realized combining objective and subjective measures with information visualization techniques, implemented on a system called RulEE-GARVis .

References

  1. Blanchard, J., Guillet, F., and Briand, H. (2003). Exploratory visualization for association rule rummaging. In Proceedings of the KDD'03 Workshop on Multimedia Data Mining (MDM), pages 107-114.
  2. Bruzzese, D. and Buono, P. (2004). Combining visual techniques for association rules exploration. In Proceedings of the Working Conference on Advanced Visual Interfaces (AVI), pages 381-384. ACM Press.
  3. Card, S. K., Mackinlay, J. D., and Shneiderman, B. (1999). Readings in information visualization: Using vision to think. Morgan Kaufmann Publishers Inc.
  4. Carvalho, V. O., Rezende, S. O., and Castro, M. (2007). Obtaining and evaluating generalized association rules. In Proceedings of the International Conference on Enterprise Information Systems (ICEIS), volume 2, pages 310-315.
  5. Chakravarthy, S. and Zhang, H. (2003). Visualization of association rules over relational DBMSs. In Proceedings of the 2003 ACM Symposium on Applied Computing (SAC), pages 922-926.
  6. Ertek, G. and Demiriz, A. (2006). A framework for visualizing association mining results. Computer and Information Sciences, 4263/2006:593-602.
  7. Gonalves, E. C., Mendes, I. M. B., and Plastino, A. (2005). Mining exceptions in databases. In Advances in Artificial Intelligence, pages 1076-1081. Springer-Verlag.
  8. Hofmann, H., Siebes, A. P. J. M., and Wilhelm, A. F. X. (2000). Visualizing association rules with interactive mosaic plots. In Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
  9. Liu, B., Hsu, W., Chen, S., and Ma, Y. (2000). Analyzing the subjective interestingness of association rules. Intelligent Systems and Their Applications, IEEE, 15(5):47-55.
  10. Melanda, E. A. and Rezende, S. O. (2003). Uso combinado de medidas objetivas como filtro de regras de associao. In Proceedings of the 4th Congress of Logic Applied to Technology Conference (LAPTEC), volume 2, pages 170-178.
  11. Ong, K.-H., Ong, K.-L., Ng, W.-K., and Lim, E.-P. (2002). CrystalClear: Active visualization of association rules. In ICDM'02 International Workshop on Active Mining (AM). Press.
  12. Sinoara, R. A. and Rezende, S. O. (2006). A methodology for identifying interesting association rules by combining objective and subjective measures. Inteligncia Artificial, Revista Iberoamericana de IA, 10(32):19- 27.
  13. Srikant, R. and Agrawal, R. (1995). Mining generalized association rules. In Proceedings of the 21th International Conference on Very Large Data Bases (VLDB), pages 407-419.
  14. Tan, P.-N., Kumar, V., and Srivastava, J. (2004). Selecting the right objective measure for association analysis. Information Systems, 29(4):293-313.
  15. Techapichetvanich, K. and Datta, A. (2005). Visar: A new technique for visualizing mined association rules. In Advanced Data Mining and Applications, pages 88- 95. Springer-Verlag.
  16. Yang, L. (2005). Pruning and visualizing generalized association rules in parallel coordinates. IEEE Transactions on Knowledge and Data Engineering, 17(1):60- 70.
  17. Zaki, M. J. (2004). Mining non-redundant association rules. Data Mining and Knowledge Discovery, 9(3):223- 248.
Download


Paper Citation


in Harvard Style

Fujimoto M., de Carvalho V. and Rezende S. (2009). EVALUATING GENERALIZED ASSOCIATION RULES COMBINING OBJECTIVE AND SUBJECTIVE MEASURES AND VISUALIZATION . In Proceedings of the 11th International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-8111-85-2, pages 285-288. DOI: 10.5220/0001852802850288


in Bibtex Style

@conference{iceis09,
author={Magaly Lika Fujimoto and Veronica Oliveira de Carvalho and Solange Oliveira Rezende},
title={EVALUATING GENERALIZED ASSOCIATION RULES COMBINING OBJECTIVE AND SUBJECTIVE MEASURES AND VISUALIZATION},
booktitle={Proceedings of the 11th International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2009},
pages={285-288},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001852802850288},
isbn={978-989-8111-85-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - EVALUATING GENERALIZED ASSOCIATION RULES COMBINING OBJECTIVE AND SUBJECTIVE MEASURES AND VISUALIZATION
SN - 978-989-8111-85-2
AU - Fujimoto M.
AU - de Carvalho V.
AU - Rezende S.
PY - 2009
SP - 285
EP - 288
DO - 10.5220/0001852802850288