PSO-BASED RESOURCE SCHEDULING ALGORITHM FOR PARALLEL QUERY PROCESSING ON GRIDS.

Arturo Pérez-Cebreros, Gilberto Martínez-Luna, Nareli Cruz-Cortés

Abstract

The accelerated development in Grid computing has positioned it as promising next generation computing platforms. Grid computing contains resource management, task scheduling, security problems, information management and so on. In the context of database query processing, existing parallelisation techniques can not operate well in Grid environments, because the way they select machines and allocate queries. This is due to the geographic distribution of resources that are owned by different organizations. The resource owners have different usage or access policies, cost models, varying loads and availability. It is a big challenge for efficient scheduling algorithm design and implementation. In this paper, a heuristic approach based on particle swarm optimization algorithm is adopted to solving parallel query scheduling problem in grid environment.

References

  1. Abraham, A., Buyya, R., and Nath, B., 2000. Nature's heuristics for scheduling jobs on computational grids. In the 8th IEEE Int. Conference on Advance Computing and Communications. India.
  2. Alpdemir, N., Mukherjee, A., Paton, N.W., Watson, P., Fernandes, A.A.A., Gounaris, A., and Smith, J., 2003. Service-based distributed querying on the grid. In Proc. Of ICSOC, pp. 467-482.
  3. Amir, Y., Awebuch, B., Barak, A., Borgstrom, S., Keren, A., 2000. An opportunity cost approach for job assignment in a scalable computing cluster. IEEE Transactions on Parallel and Distributed Systems 11(7):760-768.
  4. Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L., Maheswaran, M., Reuther, A.I., Robertson, J.P., Theys, M.D., and Yao, B., 2001. A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems. Journal of Parallel and Distributed Computating, Vol 61, No 6, p. 810-837.
  5. Buyya, R., Abramson, D, Giddy, J., 2001. A case for economy Grid architecture for service-oriented Grid computing. In proceedings of the International Parallel and Distributed Processing Symposium. 10th IEEE International heterogeneous Computing Workshop, CA. IEEE Computer Society Press: Los Alamitos, CA.
  6. Buyya, R., Abramson, D, Giddy, J., 2000. An economy driven resource management architecture for global computational power Grids. PDPTA 7800, In proceedings of the 2000 International Conference on Parallel and Distributed Processing Techniques and Applications. CSREA Press.
  7. Chrétienne, P., 1992. Task scheduling with interprocessor communication delays. European Journal of Operational Research, 57:348-354.
  8. Clerc, m., Kennedy, J., 2002. The particle swarmexplosion, stability and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1) 58-73 .
  9. DeWitt, D.J., Gerber, R., Graefe, G., Heytens, M., Kumar, K., and Muralikrishna, M., 1986. GAMMA- A high performance dataflow database machine. In Proc. Of the 12th VLDB Conf., pp. 228-237.
  10. Di Martino, V., and Mililotti, M., 2004. Sub optimal scheduling in a grid using genetic algorithms. In Parallel Computing, Vol. 30, p. 553-565 .
  11. Epstein, R., Stonebraker, M., and Wong, E., 1978. Distributed query processing in a relational database system. In Proc. Of the ACM SIGMOD Conf., pp. 169- 180.
  12. Epstein, R., Stonebraker, M., and Wong, E., Distributed query processing in a relational data base system, 1978. In proc. Of the ACM SIGMOD Conf., pp. 169- 180.
  13. Foster, I., and Kesselman, C., 1998. The Grid - Blueprint for a New Computing Infrastructure. Morgan Kaufmann Publishers.
  14. Freund, R.F., 1994. The challenges of heterogeneous computing. Parallel Systems Fair at the 8th International Parallel Processing Symp. IEEE Computer Society, Cancun, Mexico, pp. 84-91.
  15. Garofalakis, M., and Ioannidis, Y., 1997. Parallel query scheduling and optimization with time- and spaceshare resources. In Proc. Of VLDB, pp. 296-305.
  16. Gounaris, A., Sakellariou, R., Paton, N.W., Fernandes, A.A.A., 2006. A novel approach to resource scheduling for parallel query processing on computational grids. Distrib. Parallel Databases 19(2- 3),87-106.
  17. Heiser, G., Lam, F., Russell, S., 1998. Resource managment in the Mungi single-address-space operating system. In proceedings of Australasian Computer Science Conference, Perth, Australia, 4-6. Springer.
  18. Ioannidis Y., 1996. Query Optimization. ACM Computing Surveys, vol. 28, no. 1.
  19. Kossmann, D., 2000. The State of the art in distributed query processing. ACM Computing Surveys, vol. 32, no. 4, pp. 422-469,
  20. Liu, D.T., Franklin, M., Parekh, D., 2003. GridDB: A relational interface for grid. In ACM SIGMOD, ACM Press, pp. 660-660.
  21. Mackert, L.F., Lohman, G.M., 1986. R* optimizer validation and performance evaluation for distributed queries. In Proc. Of the 12th VLDB Conf. pp. 149-159.
  22. Mayr, T., Bonnet, P., Gehrke, J., Seshadri, P., 2003. Leveraging non-uniform resources for parallel query processing. In 3rd IEEE CCGrid.
  23. Meijer, M., 2004. Scheduling parallel processes using Genetic Algorithms. Master thesis. Universitat van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica.
  24. Narayanan, S., Catalyurek, U., Kurc, T., Zhang, X., Saltz, J., 2003. Applying database support for large scale data driven science in distributed environments. In Proc. Of GRID.
  25. Rahm, E., Marek, R., 1995. Dynamic multi-resource load balancing in parallel database systems. In 21th VLDB, Conf. pp. 395-406.
  26. Sampaio, S., Paton, N.W., Smith, J., Watson, P., 2002. Validated cost models for parallel OQL query processing. In Proc. Of OOIS, pp. 60-75.
  27. Shi, Y., Eberhart, R.C., 1998. A modified particle swarm optimizer. In Procedings of the IEEE Congress on Evolutionary Computation, CEC, Piscataway, NJ. 69- 73.
  28. Shroff, P., Watson, D. W., Flann, N.S., and Freund, R.F., 1996. Genetic simulated anneling for scheduling datadependent tasks in heterogeneous environments. In Proc. Heterogeneous Computing Workshop. IEEE Computer Society, Honolulu, HI, pp. 98-104.
  29. Singh, H., Youssef, A., 1996. Mapping and scheduling heterogeneous task graphs using genetic algorithms. In Proc. Heterogeneous Computing Workshop. IEEE Computer Society, Honolulu, HI, pp. 86-97.
  30. Smith, J., Gounaris, A., Watson P., Paton N.W. , Fernandes, and Sakellariou, 2003. Distributed query processing on the Grid. International Journal of Hight Performance Computing Applications, vol. 17, no. 4, pp. 353.367.
  31. Stonebraker, M., Devine, R., Kornacker, M., Litwin, W., Pfeffer, A., Sah A., Staelin, C., 1994. An economic paradigm for query processing and data migration in Mariposa. Proceedings 3rd International Conference on Parallel and Distributed Information Systems, Austin, TX, 28-30. IEEE Computer Society Press: Los Alamitos, CA.
  32. Wilschut, A.N., Flokstra, J., Apers, P., 1992. Parallelism in a main-memory DBMS: The performance of PRISMA/DB. In Proceedings of the 18th VLDB Conf.
  33. Zomaya, A.Y., Teh, Y.H., 2001. Observations on Using Genetic Algorithms for Dynamic Load-Balancing. IEEE Transactions On Parallel and Distributed Systems, Vol 12, No 9.
Download


Paper Citation


in Harvard Style

Pérez-Cebreros A., Martínez-Luna G. and Cruz-Cortés N. (2009). PSO-BASED RESOURCE SCHEDULING ALGORITHM FOR PARALLEL QUERY PROCESSING ON GRIDS. . In Proceedings of the 11th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-8111-84-5, pages 131-137. DOI: 10.5220/0001986901310137


in Bibtex Style

@conference{iceis09,
author={Arturo Pérez-Cebreros and Gilberto Martínez-Luna and Nareli Cruz-Cortés},
title={PSO-BASED RESOURCE SCHEDULING ALGORITHM FOR PARALLEL QUERY PROCESSING ON GRIDS.},
booktitle={Proceedings of the 11th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2009},
pages={131-137},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001986901310137},
isbn={978-989-8111-84-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - PSO-BASED RESOURCE SCHEDULING ALGORITHM FOR PARALLEL QUERY PROCESSING ON GRIDS.
SN - 978-989-8111-84-5
AU - Pérez-Cebreros A.
AU - Martínez-Luna G.
AU - Cruz-Cortés N.
PY - 2009
SP - 131
EP - 137
DO - 10.5220/0001986901310137