Identifying Conflicts through eMails by using an Emotion Ontology

Chahnez Zakaria, Olivier Curé, Kamel Smaïli

Abstract

In the logic of text classification, this paper presents an approach to detect emails conflict exchanged between colleagues, who belong to a geographically distributed enterprise. The idea is to inform a team leader of such situation, hence to help him in preventing serious disagreement between team members. This approach uses the vector space model with TF*IDF weight to represent email; and a domain ontology of relational conflicts to determine its categories. Our study also addresses the issue of building ontology, which is made up of two phases. First we conceptualize the domain by hand, then we enrich it by using the triggers model that enables to find out terms in corpora which correspond to different conflicts.

References

  1. Broches, R. S.: Unraveling the Hawthorne Effect: An Experimental Artifact 'Too Good to Die'. PhD thesis, University of Wesleyan (2008)
  2. Whittaker, S., Sidner, C.: Email overload: exploring personal information management of email. In: CHI 7896: Proceedings of the SIGCHI conference on Human factors in computing systems, New York, NY, USA, ACM Press (1996) 276-283
  3. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18 (1975) 613-620
  4. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29 (1997) 131-163
  5. Cortes, C., Vapnik, V.: Support vector networks. In: Machine Learning. (1995) 273-297
  6. Haton, J., Cerisara, C., Fohr, D., Laprie, Y., Smaili, K.: Reconnaissance automatique de la parole. Du signal à son interprétation. Dunod (2006)
  7. Enguehard, C., Pantera, L.: Automatic natural acquisition of a terminology. Journal of Quantitative Linguistics 2 (1995) 27-32
  8. Dias, G.: Extraction automatique d'associations lexicales à partir de corpora. PhD thesis, University of Orleans (2002)
  9. Voltz, R., Oberle, D., Staab, S., Motik, B.: Kaon server - a semantic web management system. In: Alternate Track Proceedings of the Twelfth International World Wide Web Conference, Budapest, Hungary, ACM. (2003) 139-148
  10. McGuinness, D. L.: Ontologies come of age. In Fensel, D., Hendler, J., Lieberman, H., Wahlster, W., eds.: Spinning the Semantic Web: Bringing the World Wide Web to Its Full Potential. MIT Press (2002) 171-194
  11. Gruber, T.: A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition 5 (1993) 199-220
  12. Debois, N.: Les émotions en eps: comprendre et intervenir. EP.S 1 (2007) 7
  13. Larivery, M.: Les genres d'émotions. La lettre du psy 2 (1998)
  14. Denoual, E.: Mthodes en caractères pour le traitement automatique des langues. PhD thesis, University of Joseph Fourier (2006)
  15. Lavecchia, C., Smaïli, K., Langlois, D., Haton, J.P.: Using inter-lingual triggers for machine translation. In: Eighth conference INTERSPEECH. (2007)
Download


Paper Citation


in Harvard Style

Zakaria C., Curé O. and Smaïli K. (2009). Identifying Conflicts through eMails by using an Emotion Ontology . In Proceedings of the 6th International Workshop on Natural Language Processing and Cognitive Science - Volume 1: NLPCS, (ICEIS 2009) ISBN 978-989-8111-92-0, pages 46-54. DOI: 10.5220/0002172000460054


in Bibtex Style

@conference{nlpcs09,
author={Chahnez Zakaria and Olivier Curé and Kamel Smaïli},
title={Identifying Conflicts through eMails by using an Emotion Ontology},
booktitle={Proceedings of the 6th International Workshop on Natural Language Processing and Cognitive Science - Volume 1: NLPCS, (ICEIS 2009)},
year={2009},
pages={46-54},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002172000460054},
isbn={978-989-8111-92-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Workshop on Natural Language Processing and Cognitive Science - Volume 1: NLPCS, (ICEIS 2009)
TI - Identifying Conflicts through eMails by using an Emotion Ontology
SN - 978-989-8111-92-0
AU - Zakaria C.
AU - Curé O.
AU - Smaïli K.
PY - 2009
SP - 46
EP - 54
DO - 10.5220/0002172000460054