ANALOG REALIZATIONS OF FRACTIONAL-ORDER INTEGRATORS/DIFFERENTIATORS - A Comparison

Guido Maione

Abstract

Non-integer differential or integral operators can be used to realize fractional-order controllers, which provide better performance than conventional PID controllers, especially if controlled plants are of non-integer-order. In many cases, fractional-order controllers are more flexible than PID and ensure robustness for high gain variations. This paper compares three different approaches to approximate fractional-order differentiators or integrators. Each approximation realizes a rational transfer function characterized by a sequence of interlaced minimum-phase zeros and stable poles. The frequency-domain comparison shows that best approximations have nearly the same zero-pole locations, even if they are obtained starting from different points of view.

References

  1. (IPEMC 04), Xi'an, China, 14-16 Aug. 2004, Vol. 3, pp. 1477-1482.
  2. Ma, C., Hori, Y., 2007. Fractional-order control: theory and applications in motion control (past and present). IEEE Industrial Electronics Magazine, Winter 2007, Vol. 1, No. 4, pp. 6-16.
  3. Maione, G., 2006. Concerning continued fractions representation of noninteger order digital differentiators. IEEE Signal Processing Letters, Vol. 13, No. 12, pp. 725-728.
  4. Maione, G., 2008. Continued fractions approximation of the impulse response of fractional order dynamic systems. IET Control Theory & Applications, Vol. 2, No. 7, pp. 564-572.
  5. Melchior, P., Sabatier, J., Duboy, D., Ferragne, H., Amagat, C., 2005. CRONE position controller for pneumatic butterfly valve controller by on-off valves. In Fractional Differentiation and its Applications, Le Mehauté, A., Tenreiro Machado, J.A., Trigeassou, J.C., Sabatier, J. (Eds.), Ubooks Verlag Ed., Neusäß, Vol. 3, Chap. 16, pp. 721-734.
  6. Oustaloup, A., 1991. La Commande CRONE. Commande Robuste d'Ordre Non Entièr, Editions Hermès. Paris, France.
  7. Oustaloup, A., 1995. La Dérivation non Entière: Théorie, Synthèse et Applycations, Editions Hermès, Serie Automatique. Paris, France.
  8. Podlubny, I., 1999a. Fractional Differential Equations, Academic Press. San Diego, CA, USA.
  9. Podlubny, I., 1999b. Fractional-order systems and PI?Dµ controllers. IEEE Transactions on Automatic Control, Vol. 44, No. 1, pp. 208-214.
  10. Spanier, J., Oldham, K.B., 1987. An atlas of functions, Hemisphere Publishing Co.. New York, 1987.
  11. Tenreiro Machado, J.A., Azenha, A., 1998. Fractionalorder hybrid control of robot manipulators. In IEEE SMC'98, Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics, Hyatt La Jolla, San Diego (CA), USA, 11-14 Oct. 1998, pp. 788-793.
  12. Valerio D., Sá da Costa, J., 2003. Digital implementation of non-integer control and its application to a two link control arm. In Proceedings of the European Control Conference, Cambridge, UK, 1-4 Sept. 2003.
Download


Paper Citation


in Harvard Style

Maione G. (2009). ANALOG REALIZATIONS OF FRACTIONAL-ORDER INTEGRATORS/DIFFERENTIATORS - A Comparison . In Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-674-001-6, pages 184-189. DOI: 10.5220/0002173901840189


in Bibtex Style

@conference{icinco09,
author={Guido Maione},
title={ANALOG REALIZATIONS OF FRACTIONAL-ORDER INTEGRATORS/DIFFERENTIATORS - A Comparison},
booktitle={Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2009},
pages={184-189},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002173901840189},
isbn={978-989-674-001-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - ANALOG REALIZATIONS OF FRACTIONAL-ORDER INTEGRATORS/DIFFERENTIATORS - A Comparison
SN - 978-989-674-001-6
AU - Maione G.
PY - 2009
SP - 184
EP - 189
DO - 10.5220/0002173901840189