A MIN-PLUS APPROACH FOR TRAFFIC FLOW MODELING

Julien Rousseau, Sébastien Lahaye, Claude Martinez, Jean-Louis Boimond

Abstract

In this paper we propose a modeling method for traffic flow phenomena based on the min-plus algebra. We adopt a modular approach by dividing roadways as elementary stretches which can be combined in order to get a model for a complex infrastructure. The approach is flexible in the sense that different scales can be considered for each elementary model. In fact, whatever its size, each roadway stretch is here studied as a min-plus linear system and is modeled by its impulse response in min-plus algebra. In this first step in studying traffic flow, we focus on modeling detailing the adopted methodology. We also present simulations to validate the approach.

References

  1. Baccelli, F., Cohen, G., Olsder, G. J., and Quadrat, J. P. (1992). Synchronization and Linearity. Wiley.
  2. Boudec, J. Y. L. and Thiran, P. (2001). Network Calculus: A Theory of Deterministic Queuing Systems for the Internet. Springer.
  3. Cohen, G. (2006). A Tour of Systems with the Max-Plus Flavor, volume 341 of Lecture Notes in Control and Information Sciences, chapter Positive Systems, pages 19-24.
  4. COINC, R.-G. (2009). Computational issues in network calculus. http://perso.bretagne.ens-cachan.fr/˜ bouillar/coinc/.
  5. Cruz, R. L. (1991a). A calculus for network delay, part I: Network elements in isolation. IEEE Transactions on Information Theory, 37(1):114-131.
  6. Cruz, R. L. (1991b). A calculus for network delay, part II: Network analysis. IEEE Transactions on Information Theory, 37(1):132-141.
  7. Farhi, N., Goursat, M., and Quadrat, J. P. (2007). Road traffic models using petri nets and minplus algebra. In Proceedings of the Traffic and Granular Flow Conference, Orsay, Paris.
  8. Gaubert, S. (1992). Théorie des systèmes linéaires dans les dioides. Thèse. PhD thesis, Ecole des Mines de Paris.
  9. Helbing, D. (1996). Gas-kinetic derivation of NavierStokes-like traffic equations. Physical Review E, 53(3):2366-2381.
  10. Helbing, D. (2001). Traffic and related self-driven many-particle systems. Reviews of modern physics, 73:1067-1141.
  11. Hoogendoorn, S. P. and Bovy, P. H. L. (2001). State-of-theart of Vehicular Traffic Flow Modelling. Journal of Systems and Control Engineering, 215(4):283-303.
  12. Lahaye, S. (2000). Contribution à l'étude des systèmes linéaires non stationnaires dans l'algèbre des dioides. PhD thesis, Université d'Angers.
  13. Lolito, P., Mancinelli, E., and Quadrat, J. P. (2005). A Minplus Derivation of the Fundamental Car-Traffic Law. IEEE Transactions on Automatic Control, 50(5):699- 705.
  14. Menguy, E., Boimond, J. L., Hardouin, L., and Ferrier, J. L. (2000). A First Step Towards Adaptative Control for Linear Systems in Max-Plus Algebra. Discrete Event Dynamic Systems: Theory and Applications, 10(1):347-367.
  15. Nagel, K. and Schreckenberg, M. (1992). automaton model for freeway traffic. Physique I France, 2(2):2221-2229.
Download


Paper Citation


in Harvard Style

Rousseau J., Lahaye S., Martinez C. and Boimond J. (2009). A MIN-PLUS APPROACH FOR TRAFFIC FLOW MODELING . In Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO, ISBN 978-989-8111-99-9, pages 159-166. DOI: 10.5220/0002182301590166


in Bibtex Style

@conference{icinco09,
author={Julien Rousseau and Sébastien Lahaye and Claude Martinez and Jean-Louis Boimond},
title={A MIN-PLUS APPROACH FOR TRAFFIC FLOW MODELING},
booktitle={Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,},
year={2009},
pages={159-166},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002182301590166},
isbn={978-989-8111-99-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,
TI - A MIN-PLUS APPROACH FOR TRAFFIC FLOW MODELING
SN - 978-989-8111-99-9
AU - Rousseau J.
AU - Lahaye S.
AU - Martinez C.
AU - Boimond J.
PY - 2009
SP - 159
EP - 166
DO - 10.5220/0002182301590166