COMPUTATIONAL ALGORITHM FOR NONPARAMETRIC MODELLING OF NONLINEARITIES IN HAMMERSTEIN SYSTEMS

Przemysław Śliwiński, Zygmunt Hasiewicz

Abstract

In the paper a fast computational routines for identification algorithms for recovering nonlinearities in Hammerstein systems based on orthogonal series expansions of functions are proposed. It is ascertained that both, convergence conditions and convergence rates of the computational algorithms are the same as their much less computationaly attractive 'theoretic' counterparts. The generic computational algorithm is derived and illustrated by three examples based on standard orthogonal series on interval, viz. Fourier, Legendre, and Haar systems. The exemplary algorithms are presented in a detailed, ready-to-implement, form and examined by means of computer simulations.

References

  1. Capobianco, E. (2002). Hammerstein system representation of financial volatility processes. The European Physical Journal B - Condensed Matter, 27:201-211.
  2. Dempsey, E. and Westwick, D. (2004). Identification of Hammerstein models with cubic spline nonlinearities. IEEE Transactions on Biomedical Engineering, 51(2):237-245.
  3. Eskinat, E., Johnson, S. H., and Luyben, W. L. (1991). Use of Hammerstein models in identification of non-linear systems. American Institute of Chemical Engineers Journal, 37:255-268.
  4. Giannakis, G. B. and Serpedin, E. (2001). A bibliography on nonlinear system identification. Signal Processing, 81:533-580.
  5. Greblicki, W. (1989). Nonparametric orthogonal series identification of Hammerstein systems. International Journal of Systems Science, 20:2355-2367.
  6. Greblicki, W. and Pawlak, M. (1989). Recursive nonparametric identification of Hammerstein systems. Journal of the Franklin Institute, 326(4):461-481.
  7. Greblicki, W. and Pawlak, M. (1994). Dynamic system identification with order statistics. IEEE Transactions on Information Theory, 40:1474-1489.
  8. Greblicki, W. and Pawlak, M. (2008). Nonparametric system identification. Cambridge University Press, New York.
  9. Greblicki, W. and S liwiÁ ski, P. (2002). Non-linearity estimation in Hammerstein system based on ordered observations and wavelets. In Proceedings 8th IEEE International Conference on Methods and Models in Automation and Robotics - MMAR 2002, pages 451- 456, Szczecin. Institute of Control Engineering, Technical University of Szczecin.
  10. Gyö rfi, L., Kohler, M., A. Krzyz?ak, and Walk, H. (2002). A Distribution-Free Theory of Nonparametric Regression. Springer-Verlag, New York.
  11. Härdle, W. (1990). Applied Nonparametric Regression. Cambridge University Press, Cambridge.
  12. Hasiewicz, Z. (1999). Hammerstein system identification by the Haar multiresolution approximation. International Journal of Adaptive Control and Signal Processing, 13(8):697-717.
  13. Hasiewicz, Z. (2001). Non-parametric estimation of nonlinearity in a cascade time series system by multiscale approximation. Signal Processing, 81(4):791-807.
  14. Hasiewicz, Z., Pawlak, M., and S liwiÁ ski, P. (2005). Nonparametric identification of non-linearities in blockoriented complex systems by orthogonal wavelets with compact support. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(1):427-442.
  15. Knuth, D. E. (1998). The Art of Computer Programming. Volume 3. Sorting and searching. Addison-Wesley Longman Publishing Co., Inc, Boston, MA.
  16. Kukreja, S., Kearney, R., and Galiana, H. (2005). A least-squares parameter estimation algorithm for switched Hammerstein systems with applications to the VOR. IEEE Transactions on Biomedical Engineering, 52(3):431-444.
  17. Lin, S.-K. (1994). Identification of a class of nonlinear deterministic systems with application to manipulators. IEEE Transactions on Automatic Control, 39(9):1886-1893.
  18. Pawlak, M. and Hasiewicz, Z. (1998). Nonlinear system identification by the Haar multiresolution analysis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 45(9):945-961.
  19. SliwiÁski, P. (2009a). On-line wavelet estimation of nonlinearities in Hammerstein systems. Part I - algorithm and limit properties. IEEE Transactions on Automatic Control. Submitted for review.
  20. SliwiÁski, P. (2009b). On-line wavelet estimation of nonlinearities in Hammerstein systems. Part II - small sample size properties. IEEE Transactions on Automatic Control. Submitted for review.
  21. SliwiÁski, P., Rozenblit, J., Marcellin, M. W., and Klempous, R. (2009). Wavelet amendment of polynomial models in nonlinear system identification. IEEE Transactions on Automatic Control, 54(4):820-825.
  22. Szego, G. (1974). Orthogonal Polynomials. American Mathematical Society, Providence, R.I., 3rd edition.
  23. Westwick, D. T. and Kearney, R. E. (2001). Separable least squares identification of nonlinear Hammerstein models: Application to stretch reflex dynamics. Annals of Biomedical Engineering, 29(8):707-718.
  24. Wojtaszczyk, P. (1997). A Mathematical Introduction to Wavelets. Cambridge University Press, Cambridge.
  25. Zhu, X. and Seborg, D. E. (1994). Nonlinear predictive control based on Hammerstein system. Control Theory Applications, 11:564-575.
  26. Zi-Qiang, L. (1993). Controller design oriented model identification method for Hammerstein system. Automatica, 29:767-771.
Download


Paper Citation


in Harvard Style

Śliwiński P. and Hasiewicz Z. (2009). COMPUTATIONAL ALGORITHM FOR NONPARAMETRIC MODELLING OF NONLINEARITIES IN HAMMERSTEIN SYSTEMS . In Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-674-001-6, pages 116-123. DOI: 10.5220/0002207301160123


in Bibtex Style

@conference{icinco09,
author={Przemysław Śliwiński and Zygmunt Hasiewicz},
title={COMPUTATIONAL ALGORITHM FOR NONPARAMETRIC MODELLING OF NONLINEARITIES IN HAMMERSTEIN SYSTEMS},
booktitle={Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2009},
pages={116-123},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002207301160123},
isbn={978-989-674-001-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - COMPUTATIONAL ALGORITHM FOR NONPARAMETRIC MODELLING OF NONLINEARITIES IN HAMMERSTEIN SYSTEMS
SN - 978-989-674-001-6
AU - Śliwiński P.
AU - Hasiewicz Z.
PY - 2009
SP - 116
EP - 123
DO - 10.5220/0002207301160123