REAL-CODED GENETIC ALGORITHM IDENTIFICATION OF A FLEXIBLE PLATE SYSTEM

S. Md Salleh, M. O. Tokhi, S. F. Toha

Abstract

Parametric modelling deals with determination of model parameters of a system. Parametric modelling of systems may benefit from advantages of real coded genetic algorithms (RCGAs), as they do not suffer from loss of precision during the processes of encoding and decoding compared with Binary Coded Genetic Algorithm. In this paper, RCGA is used to identify the best model order and associated parameters characterising a thin plate system. The performance of the approach is assessed on basis mean-squared error, time and frequency domain response of the developed model in characterising the system. A comparative assessment of the approach with binary coded GA is also provided. Simulation results signify the advantages of RCGA over two further algorithms in modelling the plate system are also provided.

References

  1. Chipperfield, A. J., Fleming, P. J., Pohlheim, H. and Fonseca, C., 1994. A genetic algorithm toolbox for MATLAB, Proceedings of the International Conference on Systems Engineering, Coventry, UK.
  2. Herrera, F., Lozano, M., Verdegay, J.L., 1998. Tackling real-coded genetic algorithms: operators and tools for behavioural analysis, Artificial Intelligence Review, Vol. 12, pp. 265-319.
  3. Mat Darus, I.Z., 2004. Soft computing Adaptive Active Vibration Control of Flexible Structures, PhD Thesis, Dept. of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, UK.
  4. Md Salleh, S., Tokhi, M.O., “Discrete Simulation of a Flexible Plate Structure using a State-Space Formulation”, Proceedings of 7th International Conference on System Simulation and Scientific Computing (ICSC'2008), Beijing China, 10-12 Oct 2008.
  5. Mitsukura, Y.,M., Fukumi, Norio Akamatsu and Yamamoto,T. , 2002. A System Identification Method Using a Hybrid-Type Genetic Algorithm, Proceedings of the 41st SICE Annual Conference, Vol.3 ,pp.1598- 1602.
  6. Mühlenbein, H., and Schlierkamp-Voosen, D., 1993. Predictive Models for the Breeder Genetic Algorithm: I. Continuous Parameter Optimization, Evolutionary Computation, Vol.1, issue 1, pp. 25-49.
  7. Mühlenbein, H. , Schomisch, M., and Born, J., 1991. The parallel genetic algorithm as function optimizer, Parallel Computing, 17, pp. 619-632.
  8. Shaheed, M.H. and Tokhi, M.O., 2002. Dynamic modelling of single-link flexible manipulator: parametric and non-parametric approaches, Robotica, 20, pp. 93-109.
  9. Zamanan, N.; Sykulski, J.K.; Al-Othman, A.K., Real Coded Genetic Algorithm Compared to the Classical Method of Fast Fourier Transform in Harmonics Analysis, Proceedings of the 41st International UPEC 7806, Vol. 3, pp. 1021-1025.
Download


Paper Citation


in Harvard Style

Md Salleh S., O. Tokhi M. and F. Toha S. (2009). REAL-CODED GENETIC ALGORITHM IDENTIFICATION OF A FLEXIBLE PLATE SYSTEM . In Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-674-001-6, pages 124-129. DOI: 10.5220/0002207801240129


in Bibtex Style

@conference{icinco09,
author={S. Md Salleh and M. O. Tokhi and S. F. Toha},
title={REAL-CODED GENETIC ALGORITHM IDENTIFICATION OF A FLEXIBLE PLATE SYSTEM},
booktitle={Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2009},
pages={124-129},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002207801240129},
isbn={978-989-674-001-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - REAL-CODED GENETIC ALGORITHM IDENTIFICATION OF A FLEXIBLE PLATE SYSTEM
SN - 978-989-674-001-6
AU - Md Salleh S.
AU - O. Tokhi M.
AU - F. Toha S.
PY - 2009
SP - 124
EP - 129
DO - 10.5220/0002207801240129