AN APPROACH OF ROBUST QUADRATIC STABILIZATION OF NONLINEAR POLYNOMIAL SYSTEMS - Application to Turbine Governor Control

M. M. Belhaouane, R. Mtar, H. Belkhiria Ayadi, N. Benhadj Braiek

Abstract

In this paper, robust quadratic stabilization of nonlinear polynomial systems within the frame work of Linear Matrix Inequalities (LMIs) is investigated. The studied systems are composed of a vectoriel polynomial function of state variable, perturbed by an additive nonlinearity which depends discontinuously on both time and state. Our main objective is to show, by employing the Lyapunov stability direct method and the Kronecker product properties, how a polynomial state feedback control law can be formulated to stabilize a nonlinear polynomial systems and, at the same time, maximize the bounds on the perturbation which the system can tolerate without going unstable. The efficiency of the proposed control strategy is illustrated on the Turbine - Governor system.

References

  1. Anderson, P. M. and Fouad, A. A. (1977). Power system control and stability. The IOWA.
  2. Barmish, B. (1985). Necessary and sufficient conditions for quadratic stabilizability of an uncertain systems. Journal of Optimization Theory and Applications, 46:399- 408.
  3. Belhaouane, M., Mtar, R., Belkhiria Ayadi, H., and Benhadj Braiek, N. (2008). An LMI technique for the global stabilization of nonlinear polynomial systems. International Journal of Computers, Communication and Control (IJCCC), to appear.
  4. Belkhiria Ayadi, H. and Benhadj Braiek, N. (2005). On the robust stability analysis of uncertain polynomial systems: an LMI approach. 17th IMACS World Congress, Scientific Computation, Applied Mathematics and Simulation.
  5. Benhadj Braiek, N. (1995). Feedback stabilization and stability domain estimation of nonlinear systems. Journal of The Franklin Institute, 332(2):183-193.
  6. Benhadj Braiek, N. (1996). On the global stability of nonlinear polynomial systems. IEEE Conference On Decision and Control,CDC'96.
  7. Benhadj Braiek, N. and Rotella, F. (1992). Robot model simplification by means of an identtification method. Robotics and Flexible Manufacturing Systems, Edit. J. C. Gentina and S. G. Tzafesta, pages 217-227.
  8. Benhadj Braiek, N. and Rotella, F. (1994). State observer design for analytical nonlinear systems. IEEE Syst. Man and Cybernetics Conference, 3:2045-2050.
  9. Benhadj Braiek, N. and Rotella, F. (1995). Stabilization of nonlinear systems using a Kronecker product approach. European Control Conference ECC'95, pages 2304-2309.
  10. Benhadj Braiek, N., Rotella, F., and Benrejeb, M. (1995). Algebraic criteria for global stability analysis of nonlinear systems. Journal of Systems Analysis Modelling and Simulation, Gordon and Breach Science Publishers, 17:221-227.
  11. Bouzaouache, H. and Benhadj Braiek, N. (2006). On guaranteed global exponential stability of polynomial singularly perturbed control systems. International Journal of Computers, Communications and Control (IJCCC), 1(4):21-34.
  12. Boyd, S., Ghaoui, L., and Balakrishnan, F. (1994). Linear Matrix Inequalities in System and Control Theory. SIAM.
  13. Brewer, J. (1978). Kronecker product and matrix calculus in system theory. IEEE Trans.Circ.Sys, CAS-25:722- 781.
  14. Chesi, G. (2004). Estimating the domain of attraction for uncertain polynomial systems. Automatica, 40(11):1981-1986.
  15. Chesi, G. (2009). Estimating the domain of attraction for non-polynomial systems via LMI optimizations. Automatica, doi:10.1016/j.automatica.2009.02.011(in press).
  16. Chesi, G., Garulli, A., Tesi, A., and Vicino, A. (2003). Solving quadratic distance problems: an lmi-based approach. IEEE Transactions on Automatic Control, 48(2):200-212.
  17. Chesi, G., Tesi, A., Vicino, A., and Genesio, R. (1999). On convexification of some minimum distance problems. 5th European Control Conference ECC'99.
  18. Elloumi, S. (2005). Commande décentralisée robuste des systèmes non linéaires interconnectés: Application à un système de production-transport de l'énergie éléctrique multi-machines. Thèse de doctorat es sciences, Ecole Nationale d'Ingénieurs de Tunis.
  19. Kokotovic, P. and Arcak, M. (1999). Constructive nonlinear control: Progress in the 90's. Proceedings of the 14th IFAC World Congress, Beijing, P.R. China, Plenary Volume:49-77.
  20. Leitmann, G. (1993). On one approach to the control of uncertain systems. Journal of Dynamic Systems, Measurement and Control, 115:373-380.
  21. Mtar, R., Belkhiria Ayadi, H., and Benhadj Braiek, N. (2007). Robust stability analysis of polynomial systems under nonlinear perturbations: an LMI approach. Fourth Inernational Multi-conference on Systems, Signals and Devices (SSD'07).
  22. Petersen, I. and Hollot, C. (1986). A Riccati equation approach to the stabilization of uncertain linear systems. Automatica, 22:397-411.
  23. Rotella, F. and Tanguy, G. (1988). Non linear systems: identification and optimal control. Int.J.Control, 48(2):525-544.
  24. Sauer, P. W. and Pai, M. A. (1998). Power system dynamics and stability. Englewood Cliffs, NJ:Prentice-Hall.
  25. Siljak, D. (1989). Parameter space methods for robust control design: A guided tour. IEEE Transactions on Automatic Control, 34:674-688.
  26. Siljak, D. and Stipanovic, D. (2000). Robust stabilization of nonlinear systems: The LMI approach. Mathematical Problems in Engineering, 6:461-493.
  27. Siljak, D. and Zecevic, A. (2005). Control of large-scale systems: Beyond decentralized feedback. Annual Reviews in Control, 29:169-179.
  28. Siljak, D. and Zecevic, D. M. S. A. (2002). Robust decentralized turbine/governor control using linear matrix inequalities. IEEE Transactions On Power Systems, 17(3):715-722.
  29. Stipanovic, D. and Siljak, D. (2001). Robust stability and stabilization of discrete-time nonlinear systems: The LMI approach. International Journal of Control, 74:873-879.
  30. Yakubovich, V. (1977). S-procedure in nonlinear control theory. Vestnick Leningrad Univ. Math.,, 4:73-93.
  31. Zhou and Khargonedkar (1988). Robust stabilization of linear systems with norm-bounded time-varying uncertainty. Sys. Contr. Letters, 10:17-20.
  32. Zuo, Z. and Wang, Y. (2005). A descriptor system approach to robust quadratic stability and stabilization of nonlinear systems. IEEE International Conference on Systems, Man and Cybernetics, 1:486-491.
Download


Paper Citation


in Harvard Style

M. Belhaouane M., Mtar R., Belkhiria Ayadi H. and Benhadj Braiek N. (2009). AN APPROACH OF ROBUST QUADRATIC STABILIZATION OF NONLINEAR POLYNOMIAL SYSTEMS - Application to Turbine Governor Control . In Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-674-001-6, pages 148-155. DOI: 10.5220/0002213901480155


in Bibtex Style

@conference{icinco09,
author={M. M. Belhaouane and R. Mtar and H. Belkhiria Ayadi and N. Benhadj Braiek},
title={AN APPROACH OF ROBUST QUADRATIC STABILIZATION OF NONLINEAR POLYNOMIAL SYSTEMS - Application to Turbine Governor Control},
booktitle={Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2009},
pages={148-155},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002213901480155},
isbn={978-989-674-001-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - AN APPROACH OF ROBUST QUADRATIC STABILIZATION OF NONLINEAR POLYNOMIAL SYSTEMS - Application to Turbine Governor Control
SN - 978-989-674-001-6
AU - M. Belhaouane M.
AU - Mtar R.
AU - Belkhiria Ayadi H.
AU - Benhadj Braiek N.
PY - 2009
SP - 148
EP - 155
DO - 10.5220/0002213901480155