Probabilistic Models for Semantic Representation

Francesco Colace, Massimo De Santo, Paolo Napoletano

Abstract

In this work we present the main ideas behind in Search of Semantics project which aims to provide tools and methods for revealing semantics of human linguistic action. Different part of semantics can be conveyed by a document or any kind of linguistic action: the first one mostly related to the structure of words and concepts relations (light semantics) and the second one related to relations between concepts, perceptions and actions deep semantics. As a consequence we argue that semantic representation can emerge through the interaction of both. This research project aims at investigating how those different parts of semantics and their mutual interaction, can be modeled through probabilistic models of language and through probabilistic models of human behaviors. Finally a real environment, a web search engine, is presented and discussed in order to show how some part of this project, light semantics, has been addressed.

References

  1. T. L. Griffiths, M. Steyvers, J.B.T.: Topics in semantic representation. Psychological Review 114 (2007) 211-244
  2. Colace, F., Santo, M.D., Napoletano, P.: A note on methodology for designing ontology management systems. In: AAAI Spring Symposium. (2008)
  3. Santini, S.: Summa contra ontologiam. International journal on data semantics submitted (2007)
  4. Derrida, J.: De la grammatologie. Paris:Minuit (1997)
  5. Eco, U.: A theory of semiotics. Bloomington:Undiana University Press. (1979)
  6. Ericsson, K.A., Kintsch, W.: Long-term working memory. Psychological Review. 102 (1995) 211-245
  7. Kintsch, W.: The role of knowledge in discourse comprehension: A construction-integration model. Psychological Review 95 (1988) 163-182
  8. Potter, M.C.: Very short term conceptual memory. Memory & Cognition (1993) 156-161
  9. Collins, A.M., Quillian, M.R.: Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Behavior (1969) 240-247
  10. Steyvers, M., Griffiths, T.L., Dennis, S.: Probabilistic inference in human semantic memory. Trends in Cognitive Science 10 (2006) 327-334
  11. Chaitanya, C., Padhraic, S., Mark, S.: Combining concept hierarchies and statistical topic models. In: CIKM 7808: Proceeding of the 17th ACM conference on Information and knowledge management, New York, NY, USA, ACM (2008) 1469-1470
  12. Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. MIT Press (2004)
  13. Santini, S., Gupta, A., Jain, R.: Emergent semantics through interaction in image databases. IEEE Transactions on Knowledge and Data engineering 13 (2001) 337-51
  14. Grosky, W.I., Sreenath, D.V., Fotouhi, F.: Emergent semantics and the multimedia semantic web. In: SIGMOD Record. Volume 31. (2002) 54-58
  15. Marr, D.: Vision. Freeman, S. Francisco,CA (1982)
  16. Ballard, D., Brown, C.: Computer Vision. Prentice Hall, New York, N.Y. (1982)
  17. Pylyshyn, Z.: Situating vision in the world. Trends in Cognitive Sciences 4 (2000) 197-207
  18. Fortuna, B., Mladeni?, D., Grobelnik, M.: Semi-automatic Construction of Topic Ontologies. In: Semantics, Web and Mining. Springer Berlin / Heidelberg (2006)
  19. Ding, Z., Peng, Y., Pan, R.: A bayesian approach to uncertainty modeling in owl ontology. In: Proceedings of the International Conference on Advances in Intelligent Systems - Theory and Applications. (2004)
  20. Anderson, J.R.: The adaptive nature of human categorization. Psychological Review 98 (1991) 409-429
  21. Roland G. Fryer, J., Jackson, M.O.: Categorical cognition: A psychological model of categories and identification in decision making. Working Paper Series National Bureau of Economic Research (2003)
  22. Eco, U.: Kant and the Platypus: Essays on Language and Cognition. First Harvest edition (1997)
  23. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine Learning Research 3 (2003)
Download


Paper Citation


in Harvard Style

Colace F., De Santo M. and Napoletano P. (2009). Probabilistic Models for Semantic Representation . In Proceedings of the 1st International Workshop on Ontology for e-Technologies OET 2009 - Volume 1: OET, (ICEIS 2009) ISBN 978-989-8111-96-8, pages 13-22. DOI: 10.5220/0002222100130022


in Bibtex Style

@conference{oet09,
author={Francesco Colace and Massimo De Santo and Paolo Napoletano},
title={Probabilistic Models for Semantic Representation},
booktitle={Proceedings of the 1st International Workshop on Ontology for e-Technologies OET 2009 - Volume 1: OET, (ICEIS 2009)},
year={2009},
pages={13-22},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002222100130022},
isbn={978-989-8111-96-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Workshop on Ontology for e-Technologies OET 2009 - Volume 1: OET, (ICEIS 2009)
TI - Probabilistic Models for Semantic Representation
SN - 978-989-8111-96-8
AU - Colace F.
AU - De Santo M.
AU - Napoletano P.
PY - 2009
SP - 13
EP - 22
DO - 10.5220/0002222100130022