MAMMOGRAPHIC IMAGE ANALYSIS FOR BREAST CANCER DETECTION USING COMPLEX WAVELET TRANSFORMS AND MORPHOLOGICAL OPERATORS

V. Alarcon-Aquino, O. Starostenko, R. Rosas-Romero, J. Rodriguez-Asomoza, O. J. Paz-Luna, K. Vazquez-Muñoz, L. Flores-Pulido

Abstract

This paper presents an approach for early diagnostic of Breast Cancer using the dual-tree complex wavelet transform (DT-CWT), which detect micro-calcifications in digital mammograms. The approach follows four basic strategies, namely, image denoising, band suppression, morphological transformation and inverse complex wavelet transform. The procedure of image denoising is carried out with a thresholding algorithm that computes recursively the optimal threshold at each level of wavelet decomposition. In order to maximize the detection a morphological conversion is proposed and applied to the high-frequencies sub-bands of the wavelet transformation. This procedure is applied to a set of digital mammograms from the Mammography Image Analysis Society (MIAS) database. Experimental results show that the proposed denoising algorithm and morphological transformation in combination with the DT-CWT procedure performs better than previous reported approaches.

References

  1. Akay, M., 1997. Wavelet applications in medicine, IEEE Spectrum, 34(5).
  2. Alarcon-Aquino, V. 2003. Anomaly Detection and Prediction in Communication Networks using Wavelet Transforms, PhD Thesis, Imperial College London, UK.
  3. Azzalini A., Farge M., Schneider K., 2005. Nonlinear wavelet thresholding: A recursive method to determine the optimal denoising threshold, Applied and Computational Harmonic Analysis, Elsevier, 18, pp. 177- 185.
  4. Burrus, C. S., Ramesh A. Gopinath, 1998. Introduction to Wavelets and Wavelet Transforms, Prentice Hall.
  5. Cheng, H., Lui, YM, Feiimanis, RI., 1998. A novel approach to microcalcification detection using fuzzy logic techniques. IEEE Transactions on Medical Imaging, 17 (6).
  6. Gonzalez, Rafael C., Richard E. Woods, 2001. Digital Image Processing, Second Edition, Prentice Hall.
  7. Jamarani, S.M.H.; Rezai-rad, G.; Behnam, H.; 2006. A Novel Method for Breast Cancer Prognosis Using Wavelet Packet Based Neural Network”. IEEE-EMBS Engineering in Medicine and Biology Society, 27th Annual International Conference
  8. Jansen M., Bultheel A.,1999. Asymptotic behavior of the minimum mean squared error threshold for noisy wavelet coefficients of piecewise smooth signals, Katholieke Universiteit Leuven. Department of Computer Science. Belgium.
  9. Karahaliou, A. N., et al., 2008. Breast Cancer Diagnosis: Analyzing Texture of Tissue Surrounding Microcalcifications, IEEE Transactions on Information Technology in Biomedicine, 12 (6).
  10. Melloul, M., Joscowicz, L., 2002. Segmentation of microcalcification in X-ray mammograms using entropy thresholding, In Proceedings of the 16th International Congress on Computer-Assisted Radiology and Surgery CARS/Springer.
  11. Mencattinni, A., M. Salmeri, R. Lojacono, M. Frigeno, F. Caselli, 2008. Mammographic Images Enhancement and Denoising for Breast Cancer Detection Using Dyadic Wavelet processing, IEEE Transactions on Instrumentation and Measurement, 57 (7).
  12. Sebri, A., J. Malek, R. Tourki, 2007. Automated Breast Cancer Diagnosis based on GVF-Snake Segmentation, Wavelet Features Extraction and Neural Networks Classification, Journal of Computer Science 3(8), 600- 607.
  13. Selesnick, I., Baraniuk, R.G., Kingsbury, N.G., 2005. The Dual-Tree Complex Wavelet Transform, IEEE Signal Processing Magazine.
  14. Shukla P. D. 2003. Complex Wavelet Transforms and Their Applications. M.Phil. Thesis, University of Strathclyde. Scotland, UK.
  15. Strickland, R., Hahn., 1996. Wavelet Transforms for Detecting Microcalcifications in Mammograms. IEEE Transactions on Medical Imaging, 12 (4).
  16. Suckling, J et al., 1994. The Mammographic Image Analysis Society Digital Mammogram Database Exerpta Medica. International Congress Series 1069 pp375-378
  17. Taswell C. 2000. The What, How and Why of Wavelet Shrinkage Denoising, Computing in Science & Engineering.
  18. Vazquez-Muñoz, K. 2006. Detection of Microcalcifications in Digital Mammograms Using the Dual-Tree Complex Wavelet Transform, BSc Thesis, Universidad de las Americas Puebla.
  19. Wang, T., Karayiannis, N., 1998. Detection of microcalcification in Digital mammograms using wavelets. IEEE Transactions on Medical Imaging, 17 (4).
  20. Zhao, D., 1993. Rule-based morphological feature extraction of microcalcifications in mammograms. Proceedings of SPIE. Vol. 1905.
Download


Paper Citation


in Harvard Style

Alarcon-Aquino V., Starostenko O., Rosas-Romero R., Rodriguez-Asomoza J., J. Paz-Luna O., Vazquez-Muñoz K. and Flores-Pulido L. (2009). MAMMOGRAPHIC IMAGE ANALYSIS FOR BREAST CANCER DETECTION USING COMPLEX WAVELET TRANSFORMS AND MORPHOLOGICAL OPERATORS . In Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2009) ISBN 978-989-674-007-8, pages 79-85. DOI: 10.5220/0002236400790085


in Bibtex Style

@conference{sigmap09,
author={V. Alarcon-Aquino and O. Starostenko and R. Rosas-Romero and J. Rodriguez-Asomoza and O. J. Paz-Luna and K. Vazquez-Muñoz and L. Flores-Pulido},
title={MAMMOGRAPHIC IMAGE ANALYSIS FOR BREAST CANCER DETECTION USING COMPLEX WAVELET TRANSFORMS AND MORPHOLOGICAL OPERATORS},
booktitle={Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2009)},
year={2009},
pages={79-85},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002236400790085},
isbn={978-989-674-007-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2009)
TI - MAMMOGRAPHIC IMAGE ANALYSIS FOR BREAST CANCER DETECTION USING COMPLEX WAVELET TRANSFORMS AND MORPHOLOGICAL OPERATORS
SN - 978-989-674-007-8
AU - Alarcon-Aquino V.
AU - Starostenko O.
AU - Rosas-Romero R.
AU - Rodriguez-Asomoza J.
AU - J. Paz-Luna O.
AU - Vazquez-Muñoz K.
AU - Flores-Pulido L.
PY - 2009
SP - 79
EP - 85
DO - 10.5220/0002236400790085