Vegetative State: Early Prediction of Clinical Outcome by Artificial Neural Network

L. Pignolo, F. Riganello, A. Candelieri, V. Lagani

Abstract

Residual brain function has been documented in vegetative state patients, yet early prognosis remains difficult. Purpose of this study was to identify by artificial Neural Network procedures the significant neurological signs correlated to, and predictive of outcome. The best networks test set accuracy was 70%, 72% and 70% for the entire patients’ group and the posttraumatic and non-posttraumatic subgroups, respectively. The method accuracy does not reflect a perfect classification, but is significantly far from the random or educated guess and is in accordance with the results of previous clinical studies.

References

  1. Jennett B, Plum F. Persistent vegetative state after brain damage: a syndrome in search of a name. Lancet 1972;1:734-6.
  2. Dolce G, Sazbon L. The posttraumatic vegetative state. Stuttgart, Thiene, 2002.
  3. Laureys S. The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn Sci 2005;9:556-9.
  4. Jennett B. The vegetative state. Cambridge, UK, University Press, 2002.
  5. Multi-Society Task Force on PVS. Statement on medical aspects of the persistent vegetative state. N Eng J Med 1994; 330:. 1499-1508.
  6. Zeman A. Consciousness. Brain 2001;124:1263-89 (review).
  7. Braakman R, Jennett WB, Minderhoud JM. Prognosis of the post traumatic vegetative state. Acta Neurochirurgica 1988;95): 49-52.
  8. Schmutzard E, Kampfl A, Franz G, Pfausler B, Haring HP, Ulmer H, Felber S, Golaszewski S, Aichner F. Prediction of recovery from post traumatic vegetative state with cerebral magnetic-resonance imaging. Lancet 1998;351:1763-67.
  9. Rovlias A, Kotsou S.Classification and regression tree for prediction of outcome after severe head injury using simple clinical and laboratory variables. J Neurotrauma. 2004;21:886-93.
  10. Teasdale G, Jennet B. Assessment of coma and impaired consciousness: a practical scale. Lancet 1974; 2:81-84.
  11. Dolce G., Quintieri M., Serra S., Lagani V., Pignolo L. Clinical signs and early prognosis: a decisional tree, data mining study. Brain Injury. 2008, 22:7, 617 - 623.
  12. Jennet B., Bond M. Assessment outcome after severe brain damage: a practical scale. Lancet 1976; 1: 480-484.
  13. Pignolo, L., Quintieri M., Sannita, W. G. 'The Glasgow outcome scale in vegetative state: A possible source of bias, Brain Injury, 2009, 23:1,1 - 2.
  14. Holte, R.C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63-90.
  15. Van Bemmel, J.H.,&Munsen, M.A. (1997). Handbook of medical informatics. Berlin: Springer-Verlag.
  16. Zell, A., Mache, N., Hubner, R., Schmalzl, M., Sommer, T., Korb, T. SNNS Stuttgart Neural Network Simulator Users Manual, Version 2.0, report (1992),No. 3/92, IPVR, Universität Stuttgart.
Download


Paper Citation


in Harvard Style

Pignolo L., Riganello F., Candelieri A. and Lagani V. (2009). Vegetative State: Early Prediction of Clinical Outcome by Artificial Neural Network . In Proceedings of the 5th International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: Workshop ANNIIP, (ICINCO 2009) ISBN 978-989-674-002-3, pages 91-96. DOI: 10.5220/0002264300910096


in Bibtex Style

@conference{workshop anniip09,
author={L. Pignolo and F. Riganello and A. Candelieri and V. Lagani},
title={Vegetative State: Early Prediction of Clinical Outcome by Artificial Neural Network},
booktitle={Proceedings of the 5th International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: Workshop ANNIIP, (ICINCO 2009)},
year={2009},
pages={91-96},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002264300910096},
isbn={978-989-674-002-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: Workshop ANNIIP, (ICINCO 2009)
TI - Vegetative State: Early Prediction of Clinical Outcome by Artificial Neural Network
SN - 978-989-674-002-3
AU - Pignolo L.
AU - Riganello F.
AU - Candelieri A.
AU - Lagani V.
PY - 2009
SP - 91
EP - 96
DO - 10.5220/0002264300910096