EXTENDED ANALYSIS TECHNIQUES FOR A COMPREHENSIVE BUSINESS PROCESS OPTIMIZATION

Sylvia Radeschütz, Bernhard Mitschang

Abstract

Efficient adaption of a company's business and its business processes to a changing environment is a crucial ability to survive in today's dynamic world. For optimizing business processes, a profound analysis of all relevant business data in the company is necessary. We define an extended data warehouse approach that integrates process-related data and operational business data. This extended data warehouse is used as the underlying data source for extended OLAP and data mining analysis techniques for a comprehensive business process optimization.

References

  1. Agrawal, R., Gunopulos, D., and Leymann, F. (1998). Mining process models from workflow logs. In Proc. of Extending Database Technology, London, UK.
  2. Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In Proc. of Very Large Data Bases, Chile.
  3. Bruckner, R. M., List, B., and Schiefer, J. (2002). Striving towards near real-time data integration for data warehouses. In Proc. of Data Warehousing and Knowledge Discovery, France.
  4. Casati, F., Castellanos, M., Dayal, U., and Salazar, N. (2007). A generic solution for warehousing business process data. In Proc. Very Large Data Bases, Austria.
  5. Ceglar, A., Roddick, J. F., and Powers, D. M. W. (2007). Curio: a fast outlier and outlier cluster detection algorithm for large datasets. In Proc. of Integrating artificial intelligence and data mining, Australia.
  6. Han, J. (2005). Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc., CA, USA.
  7. IBM (a). Infosphere Warehouse. Available: http://www01.ibm.com/software/data/infosphere/warehouse/.
  8. ISO/IEC 9075-2 (2003). Information technology - database languages - SQL - part 2: Foundation.
  9. Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: A review. ACM Comput. Surv., 31(3):264- 323.
  10. McCoy, D. (2002). Business activity monitoring: Calm before the storm. Technical Report LE15-9727, Gartner.
  11. Michie, D., Spiegelhalter, D. J., Taylor, C. C., and Campbell, J., editors (1994). Machine learning, neural and statistical classification. Ellis Horwood, Upper Saddle River, NJ, USA.
  12. Oracle (b). JDeveloper 11g. Available: http://oracle.com/technology/software/products/jdev/.
  13. Parsons, L., Haque, E., and Liu, H. (2004). Subspace clustering for high dimensional data: a review. SIGKDD Explor. Newsl., 6(1):90-105.
  14. Radeschütz, S., Mitschang, B., and Leymann, F. (2008). Matching of process data and operational data for a deep business analysis. In Proc. of I-ESA, Germany.
  15. Rubin, V., Günther, C. W., van der Aalst, W. M. P., Kindler, E., van Dongen, B. F., and Schäfer, W. (2007). Process mining framework for software processes. In Proc. of International Conference on Software Process, USA.
  16. Sayal, M., Casati, F., Dayal, U., and Shan, M.-C. (2002). Business process cockpit. In Proc. of Very Large Data Bases, China.
  17. Uysal, I. and Güvenir, H. A. (1999). An overview of regression techniques for knowledge discovery. Knowl. Eng. Rev., 14(4):319-340.
  18. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., and Ferguson, D. F. (2005). Web Services Platform Architecture. Prentice Hall PTR.
  19. zur Muehlen, M. (2004). Workflow-based Process Controlling. Foundation, Design, and Application of workflow-driven Process Information Systems. Logos.
Download


Paper Citation


in Harvard Style

Radeschütz S. and Mitschang B. (2009). EXTENDED ANALYSIS TECHNIQUES FOR A COMPREHENSIVE BUSINESS PROCESS OPTIMIZATION . In Proceedings of the International Conference on Knowledge Management and Information Sharing - Volume 1: KMIS, (IC3K 2009) ISBN 978-989-674-013-9, pages 77-82. DOI: 10.5220/0002269000770082


in Bibtex Style

@conference{kmis09,
author={Sylvia Radeschütz and Bernhard Mitschang},
title={EXTENDED ANALYSIS TECHNIQUES FOR A COMPREHENSIVE BUSINESS PROCESS OPTIMIZATION},
booktitle={Proceedings of the International Conference on Knowledge Management and Information Sharing - Volume 1: KMIS, (IC3K 2009)},
year={2009},
pages={77-82},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002269000770082},
isbn={978-989-674-013-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Management and Information Sharing - Volume 1: KMIS, (IC3K 2009)
TI - EXTENDED ANALYSIS TECHNIQUES FOR A COMPREHENSIVE BUSINESS PROCESS OPTIMIZATION
SN - 978-989-674-013-9
AU - Radeschütz S.
AU - Mitschang B.
PY - 2009
SP - 77
EP - 82
DO - 10.5220/0002269000770082