MULTIOBJECTIVE TUNING OF ROBUST GPC CONTROLLERS USING EVOLUTIONARY ALGORITHMS

J. M. Herrero, X. Blasco, M. Martínez, J. Sanchis

Abstract

In this article a procedure to tune robust Generalized Predictive Controllers (GPC) is presented. To tune the controller parameters a multiobjective optimization problem is formulated so the designer can consider conflicting objectives simultaneously without establishing any prior preference. Moreover model uncertainty, represented by a list of possible models, is considered. The multiobjective problem is solved with a specific Evolutionary Algorithm (ev-MOGA). Finally, an application to a non-linear thermal process is presented to illustrate the technique.

References

  1. Clarke, D., Mohtadi, C., and Tuffs, P. (1987)a). Generalized predictive control. Part I. Automatica, 23(2):137-148.
  2. Clarke, D., Mohtadi, C., and Tuffs, P. (1987b). Generalized predictive control. Part II. extensions and. Automatica, 23 (2):149-160.
  3. Coello, C., Veldhuizen, D., and Lamont, G. (2002). Evolutionary algorithms for solving multi-objective problems. Kluwer Academic Publischers.
  4. Herrero, J. (2006). Identificación robusta de sistemas no lineales mediante algoritmos evolutivos [Robust identification of non-linear systems using evolutionary algorithms.]. PhD thesis, Universidad Politécnica de Valencia, Valencia, Spain.
  5. Herrero, J., Blasco, X., Martínez, M., and Salcedo, J. (2007a). Non-linear robust identification: Application to a thermal. Lecture Notes in Computer in Computer Science, 4527:457-466.
  6. Herrero, J., Martínez, M., Ramos, C., and Sanchis, J. (2007b). Non-linear robust identification of a greenhouse model using multi-objective evolutionary algorithms. Biosystems agriculture, 16 (5):515-530.
  7. Herrero, J., Martínez, M., Sanchis, J., and Blasco, X. (2007c). Well-distributed pareto front by using the. Lecture Notes in Computer in Computer Science, 4507:292-299.
  8. Laumanns, M., Thiele, L., Deb, K., and Zitzler, E. (2002). Combining convergence and diversity in evolutionary multi-objective. Evolutionary computation, 10 (3):263-282.
  9. Reinelt, W., Garulli, A., and Ljung, L. (2002). Comparing different approaches to model error modelling in robust identification. Automatica, 38 (2):787-803.
  10. Walter, E. and Piet-Lahanier, H. (1990). Estimation of parameter bounds from bounded-error data: A survey. Mathematics and computers in Simulation, 32:449- 468.
Download


Paper Citation


in Harvard Style

M. Herrero J., Blasco X., Martínez M. and Sanchis J. (2009). MULTIOBJECTIVE TUNING OF ROBUST GPC CONTROLLERS USING EVOLUTIONARY ALGORITHMS . In Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009) ISBN 978-989-674-014-6, pages 263-268. DOI: 10.5220/0002269102630268


in Bibtex Style

@conference{icec09,
author={J. M. Herrero and X. Blasco and M. Martínez and J. Sanchis},
title={MULTIOBJECTIVE TUNING OF ROBUST GPC CONTROLLERS USING EVOLUTIONARY ALGORITHMS},
booktitle={Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009)},
year={2009},
pages={263-268},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002269102630268},
isbn={978-989-674-014-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009)
TI - MULTIOBJECTIVE TUNING OF ROBUST GPC CONTROLLERS USING EVOLUTIONARY ALGORITHMS
SN - 978-989-674-014-6
AU - M. Herrero J.
AU - Blasco X.
AU - Martínez M.
AU - Sanchis J.
PY - 2009
SP - 263
EP - 268
DO - 10.5220/0002269102630268