ON CERTAIN GROUP INVARIANT MERCER KERNELS

Bernd-Jürgen Falkowski

Abstract

For the construction of support vector machines Mercer Kernels are of considerable importance. Since the conditions of Mercer’s theorem are hard to verify in general, a systematic (constructive) description of Mercer kernels which are invariant under a transitive group action is provided. As an example kernels on Euclidean space invariant under the Euclidean motion group are treated. En passant a minor but confusing error in a seminal paper due to Gangolli is rectified. In addition an interesting relation to radial basis functions is exhibited.

References

  1. Bishop,C.M.: Pattern Recognition and Machine Learning Springer, (2006)
  2. Cover, T.M.: Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition. IEEE Trans. on Electronic Computers, Vol. 14, (1965), pp. 326-334
  3. Cristianini, N.; Shawe-Taylor, J.: An Introduction to Support Vector Machines and other Kernel-Based Learning Methods. Cambridge University Press, (2000)
  4. Falkowski, B.-J.: Levy-Schoenberg Kernels on Riemannian Symmetric Spaces of Non-Compact Type. In: Probability Measures on Groups, Ed. H. Heyer, Springer Lecture Notes in Mathematics, Vol. 1210, (1986), pp. 58-67
  5. Falkowski, B.-J.: Mercer Kernels and 1-Cohomology. In: Knowledge-Based Intelligent Information Engineering Systems & Allied Technologies, Proceedings of KES 2001, Eds. N. Bab; L.C. Jain; R.J. Howlett, IOS Press, (2001), pp. 461-465
  6. Falkowski B.-J.: Mercer Kernels and 1-Cohomology of Certain Semi-simple Lie Groups. In: Proc. of the 7th Intl. Conference on Knowledge-Based Intelligent Information and Engineering Systems (KES 2003), Eds. V. Palade, R.J. Howlett, L.C. Jain, LNAI Vol. 2773, Springer Verlag, (2003)
  7. Gangolli, R.: Positive Definite Kernels on Homogeneous Spaces. In: Ann. Inst. H. Poincare B, Vol. 3, (1967), pp. 121-225
  8. Haykin, S.: Neural Networks, a Comprehensive Foundation. Prentice-Hall, (1999)
  9. Mackey, G.W.: Induced Representations of Groups and Quantum Mechanics. Benjamin, (1968)
  10. Minsky, M.L.; Papert, S.: Perceptrons. MIT Press, (Expanded Edition 1990)
  11. Naimark, M.A. Normed Rings (English Translation). Noordhoff, Amsterdam, (1960)
  12. Parthasarathy, K.R.; Schmidt, K.: Positive Definite Kernels, Continuous Tensor Products, and Central Limit Theorems of Probability Theory. Springer Lecture Notes in Mathematics, Vol. 272, (1972)
  13. Powell, M.J.D.: Radial Basis Functions for Multivariable Interpolation: a Review. In J.C. Cox and M.G. Cox (Eds.) Algorithms for Approximation, Oxford University Press, (1987), pp. 143-167
  14. Schölkopf, B.; Smola, A.J.; Müller, K.-R.: Kernel Principal Component Analysis. In: Schölkopf, B.; Burges, J.C.; Smola, A.J. (Eds.): Advances in Kernel Methods, Support Vector Learning. MIT Press, (1999), pp. 327- 352
  15. Shashua, A.; Levin, A.: Taxonomy of Large Margin Principle Algorithms for Ordinal Regression Problems. Technical Report 2002-39, Leibniz Center for Research, School of Computer Science and Eng., the Hebrew University of Jerusalem, (2002)
  16. Shashua, A.; Levin, A.:Ranking with Large Margin Principle: Two Approaches, NIPS 14, (2003)
  17. Shawe-Taylor, J.; Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, (2004)
  18. Vapnik, V.N.: Statistical Learning Theory. John Wiley & Sons, (1998)
  19. Wahba, G.: Support Vector Machines, Reproducing Kernel Hilbert Spaces, and Randomized GACV. In: Schölkopf, B.; Burges, J.C.; Smola, A.J. (Eds.): Advances in Kernel Methods, Support Vector Learning. MIT Press, (1999), pp. 69-88
Download


Paper Citation


in Harvard Style

Falkowski B. (2009). ON CERTAIN GROUP INVARIANT MERCER KERNELS . In Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICNC, (IJCCI 2009) ISBN 978-989-674-014-6, pages 517-521. DOI: 10.5220/0002277805170521


in Bibtex Style

@conference{icnc09,
author={Bernd-Jürgen Falkowski},
title={ON CERTAIN GROUP INVARIANT MERCER KERNELS},
booktitle={Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICNC, (IJCCI 2009)},
year={2009},
pages={517-521},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002277805170521},
isbn={978-989-674-014-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICNC, (IJCCI 2009)
TI - ON CERTAIN GROUP INVARIANT MERCER KERNELS
SN - 978-989-674-014-6
AU - Falkowski B.
PY - 2009
SP - 517
EP - 521
DO - 10.5220/0002277805170521