DERIVING MODELS FOR SOFTWARE PROJECT EFFORT ESTIMATION BY MEANS OF GENETIC PROGRAMMING

Athanasios Tsakonas, Georgios Dounias

Abstract

This paper presents the application of a computational intelligence methodology in effort estimation for software projects. Namely, we apply a genetic programming model for symbolic regression; aiming to produce mathematical expressions that (1) are highly accurate and (2) can be used for estimating the development effort by revealing relationships between the project’s features and the required work. We selected to investigate the effectiveness of this methodology into two software engineering domains. The system was proved able to generate models in the form of handy mathematical expressions that are more accurate than those found in literature.

References

  1. Aguilar- Ruiz J.S., Ramos I., Riquelme J.C. and Toro M. , 2001, An evolutionary approach to estimating software development projects, Information and Software Technology, 43, pp. 875-882.
  2. Blickle T. and Theile L., 1995, A mathematical analysis of tournament selection, in: L.J. Eshelman, ed., Proc. of the 6thInternational.Conference on Genetic Algorithms, Lawrence Erlbaum Associates, Hillsdale, New Jersey, pp. 9-16.
  3. Boehm B., 1981, Software Engineering Economics, Prentice-Hall.
  4. Boehm B., Horowitz E., Madachy R., Reifer D., Clark B.K., Steece B., Brown A.W., Chulani S. and Abts C., 2000, Software Cost Estimation
  5. Boetticher, G., Lokhandwala, N., James C. Helm, 2006, Understanding the Human Estimator, 2nd Int'l. Predictive Models in Soft. Eng. (PROMISE) Workshop, 22nd IEEE Int'l. Conf. on Soft. Maintenance, PA, USA, Sep. 2006.
  6. Chen Z., T. Menzies, D. Port and B. Boehm, 2005, Feature Subset Selection Can Improve Software Cost Estimation Accuracy, in Proc. 1st Int'l. Predictive Models in Soft. Eng. (PROMISE) Workshop St. Louis, MI, USA.
  7. Conte S.D, Dunsmore H.E. and Shen V., 1986, Software Engineering Metrics and Models, BenjaminCummings.
  8. Dolado J.J., 2001, On the problem of the software cost function, Information and Software Technology, 43, pp. 61-72.
  9. Dreger J., 1989, Function Point Analysis, Englewood Cliffs, NJ, Prentice Hall.
  10. Eads D., Hill D., Davis S., Perkins S., Ma J., Porter R. and Theiler J., 2002, Genetic Algorithms and Support Vector Machines for Time Series Classification, in Proc. SPIE 4787, pp. 74-85
  11. Hihn J. and Habib-agathi H., 1991, Cost estimation of Software Intensive Projects: A survey of Current Practices, in Proc. of the 13th IEEE Int'l. Conf. Soft. Eng., May 13-16.
  12. Koza J.R., 1992, Genetic Programming: On the Programming of Computers by Means of Natural Selection, Cambridge, MA, MIT Press.
  13. Lum K., Bramble M., Hihn J., Hackney J., Khorrami M. and Monson E., 2003, Handbook of Software Cost Estimation, Jet Propulsion Laboratory, Pasadena, CA, USA.
  14. Menzies T., Z. Chen, J. Hihn, K. Lum, Selecting Best Practices for Effort Estimation, IEEE Transactions Software Engineering, Vol. 32, Number 11, November, 2006
  15. Menzies T., D. Port, Z. Chen, J. Hihn and S. Stukes, 2005, Validation Methods for Calibrating Software Effort Models, in Proc. ICSE 2005, May 15-21, St.Louis, MI, USA.
  16. Menzies T., Chen D.P.Z. and Hihn H., 2005, Simple Software Cost Analysis: Safe or Unsafe ?, in Proc. 1st Int'l. Predictive Models in Soft. Eng. (PROMISE) Workshop, St. Louis, MI, USA.
  17. Menzies T. and Di Stefano J.S. , 2004, How Good is your Blind Spot Sampling Policy?, in Proc. of 8th IEEE Int'l Symp. on High Assurance Systems Eng., March 25-26, Tampa, FL, USA.
  18. Montana D.J., 1995, Strongly Typed Genetic Programming, Evolutionary Computation, 3:2.
  19. Price S, 2007, URL: http://www.pricesystems.com.,,,
  20. Putnam L.H, 1978, A general empirical solution to the macro software sizing and estimating problem, IEEE Trans. Soft. Eng., 4:4, April 1978, pp 345-61.,
  21. Quinlan J.R., 1996, Bagging, boosting, and C4.5, in Proc. 13th Nat.Conf. Art. Intell., pp.725-30.
  22. Rodriguez D., Cuadrado J.J., Sicilia M.A. and Ruiz R. , 2006, Segmentation of Software Engineering Datasets Using the M5 Algorithm, in V.N.Alexandrov et al. (Eds.): ICCS 2006, Part IV, LNCS 3994, SpringerVerlag, pp. 789-796.
  23. Rogers A. and Prügel-Bennett A., 1999, Modeling the dynamics of steady-state genetic algorithms, in: W. Banzhaf and C. Reeves, eds., Foundations of genetic algorithms, Morgan Kaufmann, San Francisco, pp. 57-68.
  24. Singleton A., 1994, "Genetic Programming with C++", BYTE Magazine, February 1994
  25. Shepperd M. and Schofield C., 1997, Estimating software project effort using analogies, IEEE Trans. Soft. Eng., 23 (12), Nov. 1997.
  26. Srinivasan K.and Fisher D., 1995, Machine Learning Approaches to Estimating Software Development Effort, IEEE Trans. Soft. Eng., 21(2), Feb. 1995, pp. 126-37.
  27. Takagi T. and Sugeno M., 1985, Fuzzy Identification of Systems and its Application to Modeling and Control, IEEE Trans. On Systems, Man and Cybernetics, 17, pp. 295-301
  28. Tsakonas A. and Dounias G., 2007, Evolving NeuralSymbolic Systems Guided by Adaptive Training Schemes: Applications in Finance, Applied Artificial Intelligence, 21:7, pp. 681-706.
Download


Paper Citation


in Harvard Style

Tsakonas A. and Dounias G. (2009). DERIVING MODELS FOR SOFTWARE PROJECT EFFORT ESTIMATION BY MEANS OF GENETIC PROGRAMMING . In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2009) ISBN 978-989-674-011-5, pages 34-42. DOI: 10.5220/0002294300340042


in Bibtex Style

@conference{kdir09,
author={Athanasios Tsakonas and Georgios Dounias},
title={DERIVING MODELS FOR SOFTWARE PROJECT EFFORT ESTIMATION BY MEANS OF GENETIC PROGRAMMING},
booktitle={Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2009)},
year={2009},
pages={34-42},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002294300340042},
isbn={978-989-674-011-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2009)
TI - DERIVING MODELS FOR SOFTWARE PROJECT EFFORT ESTIMATION BY MEANS OF GENETIC PROGRAMMING
SN - 978-989-674-011-5
AU - Tsakonas A.
AU - Dounias G.
PY - 2009
SP - 34
EP - 42
DO - 10.5220/0002294300340042