MINING FOR RELEVANT TERMS FROM LOG FILES

Hassan Saneifar, Stéphane Bonniol, Anne Laurent, Pascal Poncelet, Mathieu Roche

Abstract

The Information extracted from log files of computing systems can be considered one of the important resources of information systems. In the case of Integrated Circuit design, log files generated by design tools are not exhaustively exploited. The logs of this domain are multi-source, multi-format, and have a heterogeneous and evolving structure. Moreover, they usually do not respect the grammar and the structures of natural language though they are written in English. According to features of such textual data, applying the classical methods of information extraction is not an easy task, more particularly for terminology extraction. We have previously introduced EXTERLOG approach to extract the terminology from such log files. In this paper, we introduce a new developed version of EXTERLOG guided by Web. We score the extracted terms by a Web and context based measure. We favor the more relevant terms of domain and emphasize the precision by filtering terms based on their scores. The experiments show that EXTERLOG is well-adapted terminology extraction approach from log files.

References

  1. Amrani, A., Kodratoff, Y., and Matte-Tailliez, O. (2004). A semi-automatic system for tagging specialized corpora. In PAKDD, pages 670-681.
  2. Bourigault, D. and Fabre, C. (2000). Approche linguistique pour l'analyse syntaxique de corpus. Cahiers de Grammaire - Université Toulouse le Mirail, (25):131- 151.
  3. Brill, E. (1992). A simple rule-based part of speech tagger. In In Proceedings of the Third Conference on Applied Natural Language Processing, pages 152-155.
  4. Church, K. W. and Hanks, P. (1990). Word association norms, mutual information, and lexicography. In Computational Linguistics, volume 16, pages 22-29.
  5. Collier, N., Nobata, C., and Tsujii, J. (2002). Automatic acquisition and classification of terminology using a tagged corpus in the molecular biology domain. Journal of Terminology, John Benjamins, 7(2):239-257.
  6. Daille, B. (1994). Approche mixte pour l'extraction automatique de terminologie : statistiques lexicales et filtres linguistiques. PhD thesis, Universit Paris 7.
  7. Daille, B. (1996). Study and Implementation of Combined Techniques for Automatic Extraction of Terminology. In The Balancing Act: Combining Symbolic and Statistical Approaches to Language, MIT Press, pages 49-66.
  8. Daille, B. (2003). Conceptual structuring through term variations. In Proceedings of the ACL 2003 workshop on Multiword expressions, pages 9-16, Morristown, NJ, USA. Association for Computational Linguistics.
  9. David, S. and Plante, P. (1990). De la nécessité d'une approche morpho-syntaxique en analyse de textes. Intelligence Artificielle et Sciences Cognitives au Québec, 2(3):140-155.
  10. Dey, L., Singh, S., Rai, R., and Gupta, S. (2005). Ontology aided query expansion for retrieving relevant texts. In AWIC, pages 126-132.
  11. Evans, D. A. and Zhai, C. (1996). Noun-phrase analysis in unrestricted text for information retrieval. In Proceedings of the 34th annual meeting on Association for Computational Linguistics, pages 17-24, Morristown, NJ, USA. Association for Computational Linguistics.
  12. F. and Enguehard, C. (2002). Extraction d'informations à partir de corpus dégradés. In Proceedings of 9ème conference sur le Traitement Automatique des Langues Naturelles (TALN'02), pages 105-115.
  13. Facca, F. M. and Lanzi, P. L. (2005). Mining interesting knowledge from weblogs: a survey. Data Knowl. Eng., 53(3):225-241.
  14. Grobelnik, M. (1998). Word sequences as features in textlearning. In In Proceedings of the 17th Electrotechnical and Computer Science Conference (ERK98, pages 145-148.
  15. Lin, D. (1998). Extracting collocations from text corpora. In In First Workshop on Computational Terminology, pages 57-63.
  16. meng Tan, C., fang Wang, Y., and do Lee, C. (2002). The use of bigrams to enhance text categorization. In Inf. Process. Manage, pages 529-546.
  17. Mollá, D. and Vicedo, J. L. (2007). Question answering in restricted domains: An overview. Computational Linguistics, 33(1):41-61.
  18. Roche, M., Heitz, T., Matte-Tailliez, O., and Kodratoff, Y. (2004). EXIT: Un système itératif pour l'extraction de la terminologie du domaine à partir de corpus spécialisés. In Proceedings of JADT'04 (International Conference on Statistical Analysis of Textual Data), volume 2, pages 946-956.
  19. Roche, M. and Prince, V. (2007). AcroDef : A quality measure for discriminating expansions of ambiguous acronyms. In CONTEXT, pages 411-424.
  20. Salton, G. and Buckley, C. (1987). Term weighting approaches in automatic text retrieval. Technical report, Ithaca, NY, USA.
  21. Saneifar, H., Bonniol, S., Laurent, A., Poncelet, P., and Roche, M. (2009). Terminology extraction from log files. In DEXA 7809: Proceedings of the 20th international conference on Database and Expert Systems Applications. Springer-Verlag.
  22. Smadja, F. (1993). Retrieving collocations from text: Xtract. Comput. Linguist., 19(1):143-177.
  23. Smadja, F., McKeown, K. R., and Hatzivassiloglou, V. (1996). Translating collocations for bilingual lexicons: A statistical approach. Computational Linguistics, 22(1):1-38.
  24. Voorhees, E. M. (1994). Query expansion using lexicalsemantic relations. In SIGIR 7894: Proceedings of the 17th annual international ACM SIGIR conference on Research and development in information retrieval, pages 61-69, New York, NY, USA. Springer-Verlag New York, Inc.
  25. Yamanishi, K. and Maruyama, Y. (2005). Dynamic syslog mining for network failure monitoring. In KDD 7805: Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, pages 499-508, New York, NY, USA. ACM.
Download


Paper Citation


in Harvard Style

Saneifar H., Bonniol S., Laurent A., Poncelet P. and Roche M. (2009). MINING FOR RELEVANT TERMS FROM LOG FILES . In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2009) ISBN 978-989-674-011-5, pages 77-84. DOI: 10.5220/0002307200770084


in Bibtex Style

@conference{kdir09,
author={Hassan Saneifar and Stéphane Bonniol and Anne Laurent and Pascal Poncelet and Mathieu Roche},
title={MINING FOR RELEVANT TERMS FROM LOG FILES},
booktitle={Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2009)},
year={2009},
pages={77-84},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002307200770084},
isbn={978-989-674-011-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2009)
TI - MINING FOR RELEVANT TERMS FROM LOG FILES
SN - 978-989-674-011-5
AU - Saneifar H.
AU - Bonniol S.
AU - Laurent A.
AU - Poncelet P.
AU - Roche M.
PY - 2009
SP - 77
EP - 84
DO - 10.5220/0002307200770084