THE DUAL PHASE EVOLUTION FRAMEWORK FOR UNDERSTANDING EVOLUTIONARY DYNAMICS IN COMPLEX ADAPTIVE SYSTEMS

Greg Paperin, Suzanne Sadedin

Abstract

Evidence from several fields suggests that dual phase evolution (DPE) may account for distinctive features associated with complex adaptive systems. Here, we review empirical and theoretical evidence for DPE in natural systems and examine the relationship of DPE to self-organized criticality and adaptive cycles. A general model for DPE in networks is outlined, with preliminary data illustrating the emergence of phase changes.

References

  1. Alba, E. & Dorronsoro, B. (2008) Cellular Genetic Algorithms, Springer.
  2. Albert, R. & Barabási, A. L. (2000) Topology of Evolving Networks: Local Events and Universality. Physical Review Letters, 85, 5234-5237.
  3. Avise, J. & Walker, D. (1998) Pleistocene phylogeographic effects on avian populations and the speciation process. Proceedings of the Royal Society B: Biological Sciences, 265, 457-463.
  4. Bak, P. (1999) How Nature Works: The Science of SelfOrganized Criticality, Springer-Verlag Telos; Reprint edition.
  5. Bak, P. & Sneppen, K. (1993) Punctuated equilibrium and criticality in a simple model of evolution. Physical Review Letters, 71, 4083.
  6. Bak, P., Tang, C. & Weisenfeld, K. (1988) Self-Organized Criticality. Physical Review A, 38, 364-374.
  7. Butlin, R., Walton, C., Monk, K. & Bridle, J. (1998) Biogeography of Sulawesi grasshoppers, genus Chitaura, using DNA sequence data. Biogeography and geological evolution of Southeast Asia. Backhuys Publishers, Leiden, The Netherlands, 355-359.
  8. Cerný, V. (1985) Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45, 41-51.
  9. Cordon, O., Moya, F. & Zarco, C. (2002) A new evolutionary algorithm combining simulated annealing and genetic programming for relevance feedback in fuzzy information retrieval systems. Soft Computing, 6, 308-319.
  10. De Carvalho, J. X. & Prado, C. P. C. (2000) SelfOrganized Criticality in the Olami-Feder-Christensen Model. Physical Review Letters, 84, 4006.
  11. Eldredge, N. & Gould, S. J. (1972) Punctuated Equilibria: An Alternative to Phyletic Gradualism, San Francisco, Freeman Cooper.
  12. Erdös, P. & Rényi, A. (1960) On the Evolution of Random Graphs Magyar Tudományos Akadémia. Matematikai Kutató Intézetének Közleményei, 5, 17-61.
  13. Gavrilets, S. (2004) Fitness Landscapes and the Origin of Species, Princeton / Oxford, Princeton University Press.
  14. Gleason, H. A. (1927) Further views on the successionconcept. Ecology, 8, 299-326.
  15. Gould, S. (2002) The structure of evolutionary theory, Belknap Press.
  16. Gould, S. & Eldredge, N. (2000) Punctuated equilibrium comes of age. Shaking the Tree: Readings from Nature in the History of Life, 17.
  17. Green, D. (1982) Fire and stability in the postglacial forests of southwest Nova Scotia. Journal of Biogeography, 29-40.
  18. Green, D. G. (1993) Emergent Behaviour in Biological Systems. In Green, D. G. & Bossomaier, T. R. J. (Eds.) Complex Systems: From Biology to Computation. IOS Press.
  19. Green, D. G. (2000) Self-Organization in complex systems. In Bossomaier, T. R. J. & Green, D. G. (Eds.) Complex Systems. Cambridge University Press.
  20. Green, D. G., Leishman, T. G. & Sadedin, S. (2006) Dual Phase Evolution: a mechanism for self-organization in complex systems. International Journal Complex Systems.
  21. Green, D. G., Newth, D. & Kirley, M. G. (2000) Connectivity and catastrophe - towards a general theory of evolution. In Bedau, M., Mccaskill, J. S., Packard, N. H., RASMUSSEN, S., Mccaskill, J. & Packard, N. (Eds.) Artificial Life VII.
  22. Gunderson, L. H. & Holling, C. S. (2002) Panarchy: understanding transformations in human and natural systems, Island Press.
  23. Hewitt, G. (2004) Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 359, 183-195.
  24. Holland, J. H. (1995) Hidden Order: How Adaptation Builds Complexity, Perseus Books.
  25. Kessler, M. A. & Werner, B. T. (2003) Self-organization of sorted patterned ground. Science, 299, 380-383.
  26. Kinouchi, O. & Prado, C. P. C. (1999) Robustness of scale invariance in models with self-organized criticality. Physical Review E, 59, 4964.
  27. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. (1983) Optimization by simulated annealing. Science, 220, 671-680.
  28. Kirley, M. G. (2002) A Cellular Genetic Algorithm with Disturbances: Optimisation Using Dynamic Spatial Interactions. Journal of Heuristics, 8, 321-242.
  29. Kirley, M. G., LI, X. & Green, D. G. (1998) Investigation of a cellular genetic algorithm that mimics landscape ecology. IN AL., M. E. (Ed.) Simulated Evolution and Learning (SEAL'98). Springer.
  30. Langton , C. G. (1990) Computation at the edge of chaos: Phase transitions and emergent computation. Physica D: Nonlinear Phenomena, 42, 13-37.
  31. Langton , C. G. (1991) Life at the Edge of Chaos. Artificial Life II. Addison-Wesley.
  32. Lenton, T. M. & Van Oijen, M. (2002) Gaia as a Complex Adaptive System. Philosophical Transactions of the Royal Society: Biological Sciences, 357, 683-695.
  33. Lin, S. W., Lee, Z. J., Chen, S. C. & Tseng, T. Y. (2008) Parameter determination of support vector machine and feature selection using simulated annealing approach. Applied Soft Computing Journal, 8, 1505- 1512.
  34. Liua, B., Wanga, L., Jina, Y.-H., Tangb, F. & Huanga, D.- X. (2005) Improved particle swarm optimization combined with chaos. Chaos, Solitons & Fractals, 25, 1261-1271.
  35. Newman, M. E. J. (1997) A model of mass extinction. Journal of Theoretical Biology, 189, 235-252.
  36. Paperin, G., Green, D. G. & Leishman, T. G. (2008) Dual Phase Evolution and Self-organisation in Networks. 7th International Conference on Simulated Evolution and LEarning (SEAL'08). Springer.
  37. Paperin, G., Green, D. G., Sadedin, S. & Leishman, T. G. (2007) A Dual Phase Evolution model of adaptive radiation in landscapes. In Randall, M., Abbass, H. A. & Wiles, J. (Eds.) The Third Australian Conference on Artificial Life (ACAL'07). Gold Coast, Australia, Springer.
  38. Perkins, S. (2003) Patterns from nowhere: Natural forces bring order to untouched ground. Science news, 163, 314-316.
  39. Ramamoorthy, C. V. & Shekhar, S. (1989) Stochastic backpropagation: a learning algorithm for generalisation problems. 13th Annual International Computer Software and Applications Conference 1989 (COMPSAC'89). Orlando, FL, USA.
  40. Roshier, D., Robertson, A., Kingsford, R. & Green, D. (2001) Continental-scale interactions with temporary resources may explain the paradox of large populations of desert waterbirds in Australia. Landscape Ecology, 16, 547-556.
  41. Sornette, D., Johansen, A. & Dornic, I. (1995) Mapping Self-Organized Criticality onto Criticality. Journal de Physique I, 5, 325-335.
  42. Sun, F. & Sun, M. (2005) Transductive Support Vector Machines Using Simulated Annealing. In Hao, Y., Liu, J., Wang, Y., Cheung, Y.-M., Yin, H., Jiao, L., Ma, J. & Jiao, Y.-C. (Eds.) 2005 International Conference Computational Intelligence and Security (CIS'2005). Berlin / Heidelberg, Springer.
  43. Swenson, N. & Howard, D. (2005) Clustering of contact zones, hybrid zones, and phylogeographic breaks in North America. The American Naturalist, 166, 581- 591.
  44. Wang, X. H. & LI, J. J. (2004) Hybrid particle swarm optimization with simulated annealing. 2004 International Conference on Machine Learning and Cybernetics.
  45. Watson, A. J. & Lovelock, J. E. (1983) Biological homeostasis of the global environment: the parable of Daisyworld. Tellus B, 35, 284-289.
  46. Weber, S. L. (2001) On Homeostasis in Daisyworld. Climatic Change, 48, 465-485.
  47. Whitley, L. D. (1993) Cellular Genetic Algorithms. 5th International Conference on Genetic Algorithms. Morgan Kaufmann.
  48. Willis, K., Bennett, K. & Walker, D. (2004) The evolutionary legacy of the Ice Ages-Introduction. Phil. Trans. R. Soc. Lond. B, 359, 157-158.
Download


Paper Citation


in Harvard Style

Paperin G. and Sadedin S. (2009). THE DUAL PHASE EVOLUTION FRAMEWORK FOR UNDERSTANDING EVOLUTIONARY DYNAMICS IN COMPLEX ADAPTIVE SYSTEMS . In Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009) ISBN 978-989-674-014-6, pages 135-143. DOI: 10.5220/0002320601350143


in Bibtex Style

@conference{icec09,
author={Greg Paperin and Suzanne Sadedin},
title={THE DUAL PHASE EVOLUTION FRAMEWORK FOR UNDERSTANDING EVOLUTIONARY DYNAMICS IN COMPLEX ADAPTIVE SYSTEMS},
booktitle={Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009)},
year={2009},
pages={135-143},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002320601350143},
isbn={978-989-674-014-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009)
TI - THE DUAL PHASE EVOLUTION FRAMEWORK FOR UNDERSTANDING EVOLUTIONARY DYNAMICS IN COMPLEX ADAPTIVE SYSTEMS
SN - 978-989-674-014-6
AU - Paperin G.
AU - Sadedin S.
PY - 2009
SP - 135
EP - 143
DO - 10.5220/0002320601350143