USING ATTAINMENT SURFACE FOR COMPARING NSGA-II AND SPEA-II - A Case Study

Alvaro Gomes, C. Henggeler Antunes, A. Gomes Martins, João Melo

Abstract

This paper presents a comparative analysis of the results obtained with two different genetic algorithms, NSGA-II and SPEA-II, in the framework of load management activities in electric power systems. The multiobjective problem deals with the identification and the selection of suitable control strategies to be applied to groups of electric loads aimed at reducing maximum power demand at the sub-station level, maximizing profits with selling of electricity and minimizing the discomfort caused to the end-users. The comparative analysis of the algorithms’ performance is done based on the attainment surface approach. Besides, it is shown that this approach can be used as a vehicle to introduce the decision maker’s preferences in the evaluation process.

References

  1. Ang, K., Y. Li, 2001. “Mutil-Objective Benchmark Studies for Evolutionary Computation”, Genetic and Evolutionary Computation Conference, Workshop Program, 393-396, San Francisco, California, 2001.
  2. Branke, J., T. Kaubler and H. Schmeck, 2001. "Guidance in Evolutionary Multi-Objective Optimization", Advances in Engineering Software, 32.
  3. Brockhoff, D., T. Friedrich, and F. Neumann, 2008. “Analysing Hypervolume Indicator Based Algorithms”, Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 847-858, 2008.
  4. Deb, K., S. Agrawal, A. Pratab, T. Meyarivan, 2002. “A fast and elitist multiobjective genetic algorithm: NSGA-II”, IEEE Transactions on Evolutionary Computation, 6 (2), pp. 182-197.
  5. Fonseca, C., P. Fleming (1996), “On the performance assessment and comparison of stochastic multiobjective optimizers”, In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel (Eds), Fourth International Conference on Parallel Problem Solving from Nature (PPSN-IV), Berlin, Germany, 584-593, 1996. Springer.
  6. Gomes, A., C. H. Antunes, A. G. Martins, 2004b. “A multiple objective evolutionary approach for the design and selection of load control strategies". IEEE Transactions on Power Systems, 2004, 19(2), p. 1173- 1180.
  7. Gomes, A., C. H. Antunes, A. G. Martins, 2008. “Design of an Adaptive Mutation Operator in an Electrical Load Management Case Study”. Computers and Operations Research, 2008, 35(9), p. 2925-2936.
  8. Hansen, M., A. Jaszkiewicz (1998), "Evaluating the quality of approximations to the non-dominated set”, IMM Technical Report IMM-REP-1998-7, Technical University of Denmark, http://delta.cs.cinvestav.mx /coello/EMOO/EMOObib.html em 24/10/2003, March 1998.
  9. Heffner, G., and C. Goldman, "Demand Responsive Programs - An Emerging Resource for Competitive Electricity Markets?", Proceedings of the International Energy Program Evaluation Conference (2001 IEPEC), 2001.
  10. Hirst, E., and B. Kirby, 2001. "Retail-Load Participation in Competitive Wholesale Electricity Markets", Edison Electric Institute, 2001.
  11. Knowles, J., and D. Corne, 2000. "Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy, "Evolutionary Computation Journal, 8, 2.
  12. Knowles, J., and D. Corne, 2001. "On metrics for comparing non-dominated sets”, In Congress on Evolutionary Computation (CEC'2002), Vol 1, pp 711-716, Piscatawya, New Jersey, May 2002.
  13. Knowles, J., L. Thiele, and E. Zitzler, 2006. “A Tutorial on The Performance Assessment of Stochastic Multiobjective Optimizers”, Tik Report Nº 214, 2006.
  14. Molina, A., A. Gabaldon, C. Alvarez, J. A. Fuentes, and E. Gómez; “A Physically Based Load Modelo f Residential Electric Thermal Storage: Applications to LM Programs”; International Journal of Power and Energy Systems, Vol. 24, 1, 2004.
  15. Zitzler, E., L. Thiele, K. Deb, 2000. "Comparison of Multiobjective Evolutionary Algorithms: Empirical Results", Evolutionary Computation, 8, 2, 173-195.
  16. Zitzler, E., L. Thiele, M. Laummans, C. Fonseca and V. Grunert da Fonseca, 2003; “Performance Assessment of Multiobjective Optimizers: An Analysis and Review”; IEEE Transactions on Evolutionary Computation, vol. 7, no. 2, April 2003.
  17. Zitzler, E., L. Thiele, and J. Bader, 2008b. “SPAM: Set Preference Algorithm for Multiobjective Optimization”, Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 847-858, 2008.
Download


Paper Citation


in Harvard Style

Gomes A., Henggeler Antunes C., Gomes Martins A. and Melo J. (2009). USING ATTAINMENT SURFACE FOR COMPARING NSGA-II AND SPEA-II - A Case Study . In Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009) ISBN 978-989-674-014-6, pages 237-242. DOI: 10.5220/0002323602370242


in Bibtex Style

@conference{icec09,
author={Alvaro Gomes and C. Henggeler Antunes and A. Gomes Martins and João Melo},
title={USING ATTAINMENT SURFACE FOR COMPARING NSGA-II AND SPEA-II - A Case Study},
booktitle={Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009)},
year={2009},
pages={237-242},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002323602370242},
isbn={978-989-674-014-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009)
TI - USING ATTAINMENT SURFACE FOR COMPARING NSGA-II AND SPEA-II - A Case Study
SN - 978-989-674-014-6
AU - Gomes A.
AU - Henggeler Antunes C.
AU - Gomes Martins A.
AU - Melo J.
PY - 2009
SP - 237
EP - 242
DO - 10.5220/0002323602370242