ARTIFICIAL LIFE MODEL OF DENGUE HOST-VECTOR DISEASE PROPAGATION

Carlos Isidoro, Nuno Fachada, Fábio Barata, Agostinho Rosa

Abstract

The paper presents an agent based model of the Aedes aegypti mosquito, which considers mosquito population dynamics and a specific population control strategy, as well the dengue propagation in mosquito (vector) and human (host) populations. More specifically, this study concerns the impact that the RIDL strategy (Release of Insects carrying a Dominant Lethal gene) has on the infection period among humans. The agents model the main aspects of the mosquito’s ecology and behavior, while the environmental components are implemented as a layer of dynamic elements obeying to physical laws. The main objective of this approach is to provide realistic simulations of insect biologic control strategies, namely RIDL. Model verification was performed through examination of simulation parameters variation and qualitative assessment with existing models and simulations. The LAIS simulator was a valuable tool in this investigation, allowing efficient agent based modeling (ABM) and simulation deployment and analysis.

References

  1. Ahumada, J., Lapointe, D., and Samuel, M. (2004). Modeling the population dynamics of Culex quinquefasciatus (Diptera: Culicidae), along an elevational gradient in Hawaii. Journal of medical entomology, 41(6):1157-1170.
  2. Alto, B. and Juliano, S. (2001). Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): implications for range expansion. Journal of medical entomology, 38(5):646-656.
  3. Atkinson, M., Su, Z., Alphey, N., Alphey, L., Coleman, P., and Wein, L. (2007). Analyzing the control of mosquito-borne diseases by a dominant lethal genetic system. Proceedings of the National Academy of Sciences, 104(22):9540-9546.
  4. Deng, C., Tao, H., and Ye, Z. (2008). Agent-based modeling to simulate the dengue spread. 7143:714310.
  5. Eisenberg, J., Reisen, W., and Spear, R. (1995a). Dynamic model comparing the bionomics of two isolated Culex tarsalis (Diptera: Culicidae) populations: model development. Journal of Medical Entomology, 32(2):83-97.
  6. Eisenberg, J., Reisen, W., and Spear, R. (1995b). Dynamic model comparing the bionomics of two isolated Culex tarsalis (Diptera: Culicidae) populations: sensitivity analysis. Journal of medical entomology, 32(2):98- 106.
  7. Esteva, L. and Mo Yang, H. (2005). Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique. Mathematical biosciences, 198(2):132-147.
  8. Fachada, N. (2008). Agent-based Simulation of the Immune System. Master's thesis, Instituto Superior Técnico, Lisboa.
  9. Focks, D., Haile, D., Daniels, E., and Mount, G. (1993a). Dynamic life table model of a container-inhabiting mosquito, Aedes aegypti (L.)(Diptera: Culicidae). Part 1. Analysis of the literature and model development. Journal of Medical Entomology, 30:1003- 1017.
  10. Focks, D., Haile, D., Daniels, E., and Mount, G. (1993b). Dynamic life table model of a container-inhabiting mosquito, Aedes aegypti (L.)(Diptera: Culicidae). Part 2. Simulation results and validation. Journal of Medical Entomology, 30:1018-1028.
  11. Helleboogh, A., Vizzari, G., Uhrmacher, A., and Michel, F. (2007). Modeling dynamic environments in multiagent simulation. Autonomous Agents and MultiAgent Systems, 14(1):87-116.
  12. Isidoro, C., Fachada, N., Barata, F., and Rosa, A. (2009a). Agent-based model of Dengue disease transmission by Aedes aegypti populations (ACCEPTED). In Lecture Notes in Computer Science. Springer.
  13. Isidoro, C., Fachada, N., Barata, F., and Rosa, A. (2009b). Agent-based model of Aedes aegypti Population Dynamics (ACCEPTED). In Lecture Notes in Artificial Intelligence. Springer.
  14. Li, J. (2004). Simple mathematical models for interacting wild and transgenic mosquito populations. Mathematical biosciences, 189(1):39-59.
  15. Macdonald, G. (1952). The analysis of equilibrium in malaria. Trop Dis Bull, 49(9):813-829.
  16. Macdonald, G. (1957). The epidemiology and control of malaria.
  17. Maiti, A., Patra, B., and Samanta, G. (2006). Sterile insect release method as a control measure of insect pests: A mathematical model. Journal of Applied Mathematics and Computing, 22(3):71-86.
  18. Ross, R. (1911). The Prevention of Malaria.
  19. Senior, K. (2008). Climate change and infectious disease: a dangerous liaison. The Lancet Infectious Diseases, 8(2):92 - 93.
  20. Thomas, D., Donnelly, C., Wood, R., and Alphey, L. Insect population control using a dominant, repressible, lethal genetic system. Science, 287(5462):2474-2476.
Download


Paper Citation


in Harvard Style

Isidoro C., Fachada N., Barata F. and Rosa A. (2009). ARTIFICIAL LIFE MODEL OF DENGUE HOST-VECTOR DISEASE PROPAGATION . In Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009) ISBN 978-989-674-014-6, pages 243-247. DOI: 10.5220/0002324102430247


in Bibtex Style

@conference{icec09,
author={Carlos Isidoro and Nuno Fachada and Fábio Barata and Agostinho Rosa},
title={ARTIFICIAL LIFE MODEL OF DENGUE HOST-VECTOR DISEASE PROPAGATION},
booktitle={Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009)},
year={2009},
pages={243-247},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002324102430247},
isbn={978-989-674-014-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Joint Conference on Computational Intelligence - Volume 1: ICEC, (IJCCI 2009)
TI - ARTIFICIAL LIFE MODEL OF DENGUE HOST-VECTOR DISEASE PROPAGATION
SN - 978-989-674-014-6
AU - Isidoro C.
AU - Fachada N.
AU - Barata F.
AU - Rosa A.
PY - 2009
SP - 243
EP - 247
DO - 10.5220/0002324102430247