CELLMICROCOSMOS 4.1 - An Interactive Approach to Integrating Spatially Localized Metabolic Networks into a Virtual 3D Cell Environment

Björn Sommer, Jörn Künsemöller, Norbert Sand, Arne Husemann, Madis Rumming, Benjamin Kormeier

Abstract

The high potential of Bioinformatics research concerning quantitative and qualitative data acquisition such as data warehouses, spatial structure prediction and 3D microscopy conveys the vision of generating a computational virtual cell. This paper discusses an approach which allows the creation and exploration of an abstract compartmented cell environment, which can be used for (semi-)automatic, species- and organelle-specific mapping and the comparison of metabolic data.

References

  1. Brandes, U., Dwyer, T., Schreiber, F., 2004: Visual Understanding of Metabolic Pathways Across Organisms using Layout in Two and a Half Dimensions. In Journal of Integrative Bioinformatics - JIB, 1(1).
  2. Call, A. B., Herrnstadt, S., Wurtele, E. S., Bassham, D., 2006: Virtual Cell: A Pedagogical Convergence between Game Design and Science Education. In Journal of Systematics, Cybernetics and Informatics, 5(5):27- 31.
  3. Chang, A., Scheer, M., Grote, A., Schomburg, I., Schomburg, D., 2009: BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. In Nucleic Acids Res. 37:D588-D592.
  4. Merks, R. M. H., Glazier, J. A., 2005: A Cell-Centered Approach to Developmental Biology. In Physica A: Statistical Mechanics and its Applications 352:113-130.
  5. Fung, D. C. Y., Hong, S.H., Koschützki, D., Schreiber, F., Xu, K., 2008: 2.5D Visualisation of Overlapping Biological Networks. In Journal of Integrative Bioinformatics - JIB, 5(1):1-17.
  6. Hunter, A., Lindsay J. G., 1986: Immunological and biosynthetic studies on the mammalian 2-oxoglutarate dehydrogenase multienzyme complex. In J Biochem., 155(1):103-109.
  7. Ishiwata, R. R., Morioka, M. S., Ogishima, S. and Tanaka, H., 2009: BioCichlid: central dogma-based 3D visualization system of time-course microarray data on a hierarchical biological network. In Bioinformatics, 25(4):543-544.
  8. O'Madadhain, J., Fisher, D., Nelson, T., White, S., Boey, Y.B.: JUNG - Java Universal Network/Graph Framework, 2009: http://jung.sourceforge.net.
  9. Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., Yamanishi, Y., 2008: KEGG for linking genomes to life and the environment. In Nucleic Acids Res. 36:D480-D484.
  10. Loew, L. M., Schaff, J. C., 2001: The Virtual Cell: A Software Environment for computational Cell Biology. In Trends in biotechnology 19(10):401-6.
  11. Meyer, B., 1998: Self-Organizing Graphs - A Neural Network Perspective of Graph Layout. In Lecture Notes in Computer Science: 1547, Springer Berlin / Heidelberg.
  12. Martone, M. E., Gupta, A., Wong, M., Qian, X., Sosinsky, G., Ludäscher B., Ellisman, M. H., 2002: A cell centered database for electron tomographic data. In J. Struct. Biology 138:145-155.
  13. Pavlopoulos, G. A., O'Donoghue, S. I., Satagopam, V. P., Soldatos, T. G., Pafilis, E., Schneider, R., 2008: Arena3D: visualization of biological networks in 3D. In BMC Systems Biology 2008, 2:104.
  14. Robinson, A. J., Flores, T. P., 1997: Novel Techniques for Visualizing Biological Information. In ISMB-97 Proceedings, 241-249.
  15. Rojdestvenski, I., 2003: Metabolic pathways in three dimensions. Bioinformatics, 19(18):2436-2441.
  16. Sugimoto, M., Takahashi, K., Kitayama, T., Ito, D., Tomita, M., 2005: Distributed Cell Biology Simulations with E-Cell System. In Lecture Notes in Computer Science, Springer.
  17. Töpel, T., Kormeier, B., Klassen A., Hofestädt, R., 2008: BioDWH: A Data Warehouse Kit for Life Science Data Integration. Journal of Integrative Bioinformatics, 5(2):93.
  18. The UniProt Consortium, 2008: The Universal Protein Resource (UniProt). In Nucleic Acids Res. 36:D190-D195.
  19. Yamaguchi, R., Lartigue, L., Perkins, G., Scott, R.T., Dixit, A., Ellisman, M.H., Kuwana, T. and Newmeyer, D.D., 2008: Proapoptotic BH3-only proteins induce Bax/Bak-dependent mitochondrial cristae remodeling independent of cytochrome c release and Bak oligomerization. In Mol. Cell, 31:557-569.
  20. Yang, Y., Wurtele, E. S., Cruz-Neira, C. and Dickerson, J. A., 2006: Hierarchical Visualization of Metabolic Networks Using Virtual Reality. In Proc. ACM Intl. Conf. on Virtual Reality Continuum and Its Applications (Hong Kong, China). VRCIA 7806. ACM Press, New York, NY, 377-381.
Download


Paper Citation


in Harvard Style

Sommer B., Künsemöller J., Sand N., Husemann A., Rumming M. and Kormeier B. (2010). CELLMICROCOSMOS 4.1 - An Interactive Approach to Integrating Spatially Localized Metabolic Networks into a Virtual 3D Cell Environment . In Proceedings of the First International Conference on Bioinformatics - Volume 1: BIOINFORMATICS, (BIOSTEC 2010) ISBN 978-989-674-019-1, pages 90-95. DOI: 10.5220/0002692500900095


in Bibtex Style

@conference{bioinformatics10,
author={Björn Sommer and Jörn Künsemöller and Norbert Sand and Arne Husemann and Madis Rumming and Benjamin Kormeier},
title={CELLMICROCOSMOS 4.1 - An Interactive Approach to Integrating Spatially Localized Metabolic Networks into a Virtual 3D Cell Environment},
booktitle={Proceedings of the First International Conference on Bioinformatics - Volume 1: BIOINFORMATICS, (BIOSTEC 2010)},
year={2010},
pages={90-95},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002692500900095},
isbn={978-989-674-019-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Bioinformatics - Volume 1: BIOINFORMATICS, (BIOSTEC 2010)
TI - CELLMICROCOSMOS 4.1 - An Interactive Approach to Integrating Spatially Localized Metabolic Networks into a Virtual 3D Cell Environment
SN - 978-989-674-019-1
AU - Sommer B.
AU - Künsemöller J.
AU - Sand N.
AU - Husemann A.
AU - Rumming M.
AU - Kormeier B.
PY - 2010
SP - 90
EP - 95
DO - 10.5220/0002692500900095